| mlr_measures_surv.mse | R Documentation |
Calculates the mean squared error (MSE).
The MSE is defined by
1/n ∑ ((t - t*)^2)
where t is the true value and t* is the prediction.
Censored observations in the test set are ignored.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
MeasureSurvMSE$new()
mlr_measures$get("surv.mse")
msr("surv.mse")
Type: "surv"
Range: [0, Inf)
Minimize: TRUE
Required prediction: response
mlr3::Measure -> mlr3proba::MeasureSurv -> MeasureSurvMSE
new()Creates a new instance of this R6 class.
MeasureSurvMSE$new()
clone()The objects of this class are cloneable with this method.
MeasureSurvMSE$clone(deep = FALSE)
deepWhether to make a deep clone.
Other survival measures:
mlr_measures_surv.calib_alpha,
mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc,
mlr_measures_surv.cindex,
mlr_measures_surv.dcalib,
mlr_measures_surv.graf,
mlr_measures_surv.hung_auc,
mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss,
mlr_measures_surv.mae,
mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2,
mlr_measures_surv.rcll,
mlr_measures_surv.rmse,
mlr_measures_surv.schmid,
mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr,
mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr,
mlr_measures_surv.uno_tpr,
mlr_measures_surv.xu_r2
Other response survival measures:
mlr_measures_surv.mae,
mlr_measures_surv.rmse
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.