| mlr_measures_surv.rcll | R Documentation |
Calculates the right-censored logarithmic (log), loss.
The RCLL, in the context of probabilistic predictions, is defined by
L(f, t, Δ) = -log(Δ f(t) + (1 - Δ) S(t))
where Δ is the censoring indicator.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
MeasureSurvRCLL$new()
mlr_measures$get("surv.rcll")
msr("surv.rcll")
Type: "surv"
Range: (-Inf, Inf)
Minimize: TRUE
Required prediction: distr
mlr3::Measure -> mlr3proba::MeasureSurv -> MeasureSurvRCLL
new()Creates a new instance of this R6 class.
MeasureSurvRCLL$new()
clone()The objects of this class are cloneable with this method.
MeasureSurvRCLL$clone(deep = FALSE)
deepWhether to make a deep clone.
Avati, A., Duan, T., Zhou, S., Jung, K., Shah, N. H., & Ng, A. (2018). Countdown Regression: Sharp and Calibrated Survival Predictions. http://arxiv.org/abs/1806.08324
Other survival measures:
mlr_measures_surv.calib_alpha,
mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc,
mlr_measures_surv.cindex,
mlr_measures_surv.dcalib,
mlr_measures_surv.graf,
mlr_measures_surv.hung_auc,
mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss,
mlr_measures_surv.mae,
mlr_measures_surv.mse,
mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2,
mlr_measures_surv.rmse,
mlr_measures_surv.schmid,
mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr,
mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr,
mlr_measures_surv.uno_tpr,
mlr_measures_surv.xu_r2
Other Probabilistic survival measures:
mlr_measures_surv.graf,
mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss,
mlr_measures_surv.schmid
Other distr survival measures:
mlr_measures_surv.calib_alpha,
mlr_measures_surv.dcalib,
mlr_measures_surv.graf,
mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss,
mlr_measures_surv.schmid
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.