Nothing
#' @title Image Learner
#'
#' @name mlr_learners_torch_image
#'
#' @description
#' Base Class for Image Learners.
#' The features are assumed to be a single [`lazy_tensor`] column in RGB format.
#'
#' @template param_id
#' @template param_task_type
#' @template param_param_set
#' @template param_optimizer
#' @template param_callbacks
#' @template param_loss
#' @template param_packages
#' @template param_man
#' @template param_properties
#' @template param_label
#' @template param_predict_types
#' @param jittable (`logical(1)`)\cr
#' Whether the model can be jit-traced.
#'
#' @section Parameters:
#' Parameters include those inherited from [`LearnerTorch`] and the `param_set` construction argument.
#'
#' @family Learner
#' @include LearnerTorch.R
#'
#' @export
LearnerTorchImage = R6Class("LearnerTorchImage",
inherit = LearnerTorch,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(id, task_type, param_set = ps(), label, optimizer = NULL, loss = NULL,
callbacks = list(), packages, man, properties = NULL, predict_types = NULL, jittable = FALSE) {
super$initialize(
id = id,
task_type = task_type,
label = label,
optimizer = optimizer,
loss = loss,
param_set = param_set,
packages = packages,
callbacks = callbacks,
predict_types = predict_types,
feature_types = "lazy_tensor",
man = man,
jittable = jittable
)
}
),
private = list(
.ingress_tokens = function(task, param_vals) {
if (task$n_features != 1L) {
stopf("Learner '%s' received task '%s' with %i features, but the learner expects exactly one feature.", self$id, task$id, length(task$feature_names))
}
list(input = ingress_ltnsr(feature_name = task$feature_names))
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.