autoplot.BenchmarkResult: Plots for Benchmark Results

View source: R/BenchmarkResult.R

autoplot.BenchmarkResultR Documentation

Plots for Benchmark Results

Description

Visualizations for mlr3::BenchmarkResult. The argument type controls what kind of plot is drawn. Possible choices are:

  • "boxplot" (default): Boxplots of performance measures, one box per mlr3::Learner and one facet per mlr3::Task.

  • "roc": ROC curve (1 - specificity on x, sensitivity on y). The mlr3::BenchmarkResult may only have a single mlr3::Task and a single mlr3::Resampling. Note that you can subset any mlr3::BenchmarkResult with its ⁠$filter()⁠ method (see examples). Requires package precrec.

  • "prc": Precision recall curve. See "roc".

Usage

## S3 method for class 'BenchmarkResult'
autoplot(
  object,
  type = "boxplot",
  measure = NULL,
  theme = theme_minimal(),
  ...
)

Arguments

object

(mlr3::BenchmarkResult).

type

(character(1)):
Type of the plot. See description.

measure

(mlr3::Measure)
Performance measure to use.

theme

(ggplot2::theme())
The ggplot2::theme_minimal() is applied by default to all plots.

...

(ignored).

Value

ggplot2::ggplot().

References

Saito T, Rehmsmeier M (2017). “Precrec: fast and accurate precision-recall and ROC curve calculations in R.” Bioinformatics, 33(1), 145-147. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/bioinformatics/btw570")}.

Examples

if (requireNamespace("mlr3")) {
  library(mlr3)
  library(mlr3viz)

  tasks = tsks(c("pima", "sonar"))
  learner = lrns(c("classif.featureless", "classif.rpart"),
    predict_type = "prob")
  resampling = rsmps("cv")
  object = benchmark(benchmark_grid(tasks, learner, resampling))

  head(fortify(object))
  autoplot(object)
  autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc")
}

mlr3viz documentation built on July 1, 2024, 5:06 p.m.