autoplot.LearnerClassifGlmnet: Plot for LearnerClassifGlmnet / LearnerRegrGlmnet /...

Description Usage Arguments Value References Examples

View source: R/LearnerClassifGlmnet.R

Description

Visualizations for mlr3learners::mlr_learners_classif.glmnet, mlr3learners::mlr_learners_regr.glmnet, mlr3learners::mlr_learners_classif.cv_glmnet and mlr3learners::mlr_learners_regr.cv_glmnet using the package ggfortify.

Note that learner-specific plots are experimental and subject to change.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
## S3 method for class 'LearnerClassifCVGlmnet'
autoplot(object, ...)

## S3 method for class 'LearnerClassifGlmnet'
autoplot(object, ...)

## S3 method for class 'LearnerRegrCVGlmnet'
autoplot(object, ...)

## S3 method for class 'LearnerRegrGlmnet'
autoplot(object, ...)

Arguments

object

(mlr3learners::LearnerClassifGlmnet | mlr3learners::LearnerRegrGlmnet | mlr3learners::LearnerRegrCVGlmnet | mlr3learners::LearnerRegrCVGlmnet).

...

(any): Additional arguments, passed down to ggparty::autoplot.party().

Value

ggplot2::ggplot() object.

References

Tang Y, Horikoshi M, Li W (2016). “ggfortify: Unified Interface to Visualize Statistical Result of Popular R Packages.” The R Journal, 8(2), 474–485. doi: 10.32614/RJ-2016-060.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
## Not run: 
library(mlr3)
library(mlr3viz)
library(mlr3learners)

# classification
task = tsk("sonar")
learner = lrn("classif.glmnet")
learner$train(task)
autoplot(learner)

# regression
task = tsk("mtcars")
learner = lrn("regr.glmnet")
learner$train(task)
autoplot(learner)

## End(Not run)

mlr3viz documentation built on July 2, 2021, 1:07 a.m.