Nothing
#@arg opt.state [OptState]
#@arg x.df [data.frame (1xp)]
# The final point to be evaluated as a result from getOptPathX(op, best.index)
evalFinalPoint = function(opt.state, x.df) {
opt.problem = getOptStateOptProblem(opt.state)
control = getOptProblemControl(opt.problem)
n = control$final.evals
# do some final evaluations and compute mean of target fun values
# FIXME: Do we really want the resampling of the last point be part of the opt.path and thus be part of a new model fit if we restart the problem?
showInfo(getOptProblemShowInfo(opt.problem), "Performing %i final evals", n)
x.df[seq_len(n), ] = x.df
prop = makeProposal(
control = control,
prop.points = x.df,
prop.type = rep("final_eval", n)
)
evalProposedPoints.OptState(opt.state, prop, train.time = NA_real_)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.