Nothing
dataset <- survival::colon |>
data.table::as.data.table() |>
na.omit()
dataset <- dataset[get("etype") == 2, ]
seed <- 123
surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]
cat_vars <- c("sex", "obstruct", "perfor", "adhere", "differ", "extent",
"surg", "node4", "rx")
split_vector <- splitTools::multi_strata(
df = dataset[, .SD, .SDcols = surv_cols],
strategy = "kmeans",
k = 4
)
train_x <- data.matrix(
dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
event = (dataset[, get("status")] |>
as.character() |>
as.integer()),
time = dataset[, get("time")],
type = "right"
)
fold_list <- splitTools::create_folds(
y = split_vector,
k = 3,
type = "stratified",
seed = seed
)
test_that(
desc = "test cv - surv_coxph_cox",
code = {
surv_coxph_cox_optimizer <- mlexperiments::MLCrossValidation$new(
learner = LearnerSurvCoxPHCox$new(),
fold_list = fold_list,
ncores = 1L,
seed = seed,
return_models = TRUE
)
surv_coxph_cox_optimizer$performance_metric <- c_index
surv_coxph_cox_optimizer$learner_args <- list(cat_vars = cat_vars)
# set data
surv_coxph_cox_optimizer$set_data(
x = train_x,
y = train_y,
cat_vars = cat_vars
)
cv_results <- surv_coxph_cox_optimizer$execute()
expect_type(cv_results, "list")
expect_equal(dim(cv_results), c(3, 2))
expect_true(inherits(
x = surv_coxph_cox_optimizer$results,
what = "mlexCV"
))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.