Nothing
dataset <- survival::colon |>
data.table::as.data.table() |>
na.omit()
dataset <- dataset[get("etype") == 2, ]
seed <- 123
surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]
param_list_glmnet <- expand.grid(
alpha = seq(0, 1, .2)
)
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
} else {
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}
split_vector <- splitTools::multi_strata(
df = dataset[, .SD, .SDcols = surv_cols],
strategy = "kmeans",
k = 4
)
train_x <- model.matrix(
~ -1 + .,
dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
event = (dataset[, get("status")] |>
as.character() |>
as.integer()),
time = dataset[, get("time")],
type = "right"
)
fold_list <- splitTools::create_folds(
y = split_vector,
k = 3,
type = "stratified",
seed = seed
)
options("mlexperiments.bayesian.max_init" = 10L)
# ###########################################################################
# %% TUNING
# ###########################################################################
glmnet_bounds <- list(alpha = c(0., 1.))
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
# ###########################################################################
# %% NESTED CV
# ###########################################################################
test_that(
desc = "test nested cv, grid - surv_glmnet_cox",
code = {
surv_glmnet_cox_optimizer <- mlexperiments::MLNestedCV$new(
learner = LearnerSurvGlmnetCox$new(),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
surv_glmnet_cox_optimizer$parameter_bounds <- glmnet_bounds
surv_glmnet_cox_optimizer$parameter_grid <- param_list_glmnet
surv_glmnet_cox_optimizer$split_type <- "stratified"
surv_glmnet_cox_optimizer$split_vector <- split_vector
surv_glmnet_cox_optimizer$optim_args <- optim_args
surv_glmnet_cox_optimizer$performance_metric <- c_index
# set data
surv_glmnet_cox_optimizer$set_data(
x = train_x,
y = train_y
)
cv_results <- surv_glmnet_cox_optimizer$execute()
expect_type(cv_results, "list")
expect_equal(dim(cv_results), c(3, 4))
expect_true(inherits(
x = surv_glmnet_cox_optimizer$results,
what = "mlexCV"
))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.