mmc: Multivariate measurement error correction

Description Usage Arguments Value Note Author(s) References Examples

View source: R/mmc.R

Description

Multivariate measurement error correction for linear, logistic and Cox models.

Usage

1
mmc(model,type,mdata,rdata,rep,evar,rvar,bootstrap,boot)

Arguments

model

Model is specified. For example, a Cox model can be specified as model = 'Surv(time,death) ~ x1'; a logistic regression model as model = 'glm(y ~ x1, family = 'binomial)'; a linear regression model as model = 'glm(y ~ x1, family = 'gaussian')'.

type

Type of model is specified. Options are 'linear', 'logistic', or 'Cox'.

mdata

Main study data. This dataset includes outcome variables and covariates measured with and without error, to be included in the model statement. Data for individuals with any missing data are deleted.

rdata

Reliability data. This dataset includes repeated measurements for predictor variables measured with error. This data is used to estimate within-person covariance matrix. Reliability data can consist of repeated observations for a subset of individuals in the data. For instance, the main study data can have observations for 1000 individuals and the reliability data can consist of repeated measurements for 100 individuals in the main study data. Reliability data should contain at least two repeated measurements for each variable measured with error. It is assumed that variables in the reliability data have same number of repeated measurements. Data for individuals with any missing data are deleted.

rep

Number of repeated measurements in the reliability data.

evar

Variables measured with error in the main study data and in the model statement.

rvar

Variable names in the reliability study data. It is assumed that the order of variables is same as it appears in the model statement. For example, if two predictor variables x1 and x2 are measured with error, rvar = c('x11','x12','x13','x21','x22','x23') would represent variable names for the three repeated measurements for x1 and x2, respectively.

bootstrap

Specifies whether standard errors and 95 percent confidence intervals should be obtained for the corrected estimates using bootstrap resamples. By default, the bootstrap procedure is not implemented (i.e. only the corrected estimates are returned).

boot

Number of bootstrap resamples to be used to obtain standard errors and confidence intervals. By default, the bootstrap procedure is not implemented (i.e. only the corrected estimates are returned).

Value

A list of returned, consisting of

uncorrected

Uncorrected estimates.

total

Total covariance matrix for variables measured with error. This is estimated from the main study data.

within

Within person covariance matrix for variables measured with error. This is estimated from the reliability data.

between

Between person covariance matrix for variables measured with error. This is estimated by subtracting the estimated within person covariance from the total covariance matrix.

corrected

Corrected estimates. Standard errors and 95 percent confidence intervals are returned if bootstrap procedure is requested.

Note

For logistic regression and Cox models, the method of correction performed in this function is only recommended when: 1. The outcome is rare (disease probability less than 5 percent) 2. All predictors measured with error are continuous 3. The degree of measurement error is not severe (e.g. reliability coefficient > .5)

Author(s)

Jaejoon Song <jjsong2@mdanderson.org>

References

Rosner, B., Spiegelan D., and Willett W. C. (1992). Correction of logistic regression risk estimates and confidence intervals for random within-person measurement error. American Journal of Epidemiology, 136, 1400-13.

Rosner, B., and Gore R. (2001). Measurement error correction in nutritional epidemiology based on individual foods, with application to the relation of diet to breast cancer. American Journal of Epidemiology, 154, 827-35.

Spiegelman, D., Schneeweis, S., and McDermott, A. (1997). Measurement error correction for logistic regression models with an "Alloyed Gold Standard". American Journal of Epidemiology, 145, 184-86.

The SAS RELIBPLS Macro. (2015, July 1). Retrieved from
http://www.hsph.harvard.edu/donna-spiegelman/software/relibpls8

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
########################################################################
## Example 1
## Generate data for linear regression
## assuming that one predictor variable is measured with error
########################################################################

# Setting seed for replicability
set.seed(12345)
library(MASS)
library(mmc)

# Generating main dataset with 1000 observations
n <- 1000
# We generate data assuming that one predictor is measured with error
# Setting parameters for between person covariance matrix
var_between <- 1
# Setting parameters for within person covariance matrix
var_within <- .5
var_total <- var_within + var_between

# Generating data with a random variable
data_truth <- as.matrix(rnorm(n, -2, var_between),ncol=1)
# Generating measurement error for the random variable
measurement_error <-  as.matrix(rnorm(n, 0, var_within),ncol=1)
# The 'observed' data is constructed by adding the measurement error to the generated data
data_observed <- data_truth + measurement_error

# Setting true parameter values for linear regression
beta0 <- 1
beta1 <- 1

# Generate a continuous outcome variable
y <- beta0 + beta1*data_truth[1:n,1] + rnorm(n, 0,1)

# Set up a main dataset with the outcome variable and a predictor, 
# measured with error.
datalin <- data.frame(y = y, x1 = data_observed[,1])

# Generating a reliability data.
# We assume that three repeated measurements are available for the predictor.
numrep <- 3
times <- 1:numrep
psi <- .8  # We assume that the repeated measurements have a AR(1) corr. structure
H <- abs(outer(times, times, "-"))

# Setting up a covariance structure for the reliability data.
Rcov <- var_between * psi^H

# We assume that the reliability dataset has 
# data for only a subset of individuals in the main study data (n = 100)
# We assume that there are three repeated measurements for the predictor variable.
nr <- 100
mat <- mvrnorm(nr, Rcov, mu = c(rep(-2,numrep)), empirical = TRUE)

relibdata <- data.frame(x11 = mat[,1], x12 = mat[,2], x13 = mat[,3])

# Fitting a linear regression
glmfit.lin1 <- glm(y~x1, family="gaussian", data=datalin)
summary(glmfit.lin1)

# Using function mmc to get measurement error corrected estimates
rcfit.lin1 <- mmc(model = 'y~x1',
             type = 'linear',
             mdata = datalin,
             rdata <- relibdata,
             rep = 3,
             evar = c('x1'),
             rvar = c('x11','x12','x13'),
             bootstrap = 'FALSE')
rcfit.lin1


# Using function mmc to get measurement error corrected estimates
# with bootstrapped SE and confidence intervals
## Not run: 
rcfit.lin1 <- mmc(model = 'y~x1',
             type = 'linear',
             mdata = datalin,
             rdata <- relibdata,
             rep = 3,
             evar = c('x1'),
             rvar = c('x11','x12','x13'),
             bootstrap = 'TRUE',
             boot <- 20)
rcfit.lin1

## End(Not run)





####################################################################
## Example 2
## Generate data for linear regression
## assuming that two predictor variables are measured with error
####################################################################

# Setting seed for replicability
set.seed(12345)
library(MASS)
library(mmc)

# Generating main dataset with 1000 observations
n <- 1000
# We generate data assuming that two predictors are measured with errors
# Setting parameters for between person covariance matrix
sigma1sq <- 1
sigma2sq <- 1
rho <- .3      # We assume that the two predictor variables are correlated
# Setting parameters for within person covariance matrix
theta1sq <- .3
theta2sq <- .3
# We assume that measurement errors for two predictor variables are independent
phi <- 0  

cov_between <- matrix(
  c(sigma1sq,rho*sqrt(sigma1sq)*sqrt(sigma2sq),  
  rho*sqrt(sigma1sq)*sqrt(sigma2sq), sigma2sq),2,2)

cov_within <- matrix(
  c(theta1sq,phi*sqrt(theta1sq)*sqrt(theta2sq),  
  phi*sqrt(theta1sq)*sqrt(theta2sq), theta2sq),2,2)

cov_total <- cov_within + cov_between

# Generating data with two random variables
data_truth <- mvrnorm(n, c(-2,0.9), cov_between, empirical = TRUE)
# Generating measurement error for the two random variables
measurement_error <-  mvrnorm(n, c(0,0), cov_within, empirical = TRUE)
# The 'observed' data is constructed by adding the measurement error to the generated data
data_observed <- data_truth + measurement_error

# Setting true parameter values for linear regression
beta0 <- 1
beta1 <- 1
beta2 <- 2

# Generate a continuous outcome variable
y <- beta0 + beta1*data_truth[1:n,1] + beta2*data_truth[1:n,2] + rnorm(n, 0,1)

# Set up a main dataset with the outcome variable and the two predictors, 
# measured with error.
datalin <- data.frame(y = y, x1 = data_observed[,1], x2 = data_observed[,2])

# Generating a reliability data.
# We assume that three repeated measurements are available, or each predictor.
numrep <- 3
times <- 1:numrep
psi <- .8  # We assume that the repeated measurements have a AR(1) corr. structure

H <- abs(outer(times, times, "-"))
R1 <- sigma1sq * psi^H
R2 <- sigma2sq * psi^H
RRcov <- sqrt(theta1sq)*sqrt(theta2sq)* rho * psi^H

# Setting up a covariance structure for the reliability data.
Rcov <- rbind(cbind(R1,RRcov),cbind(RRcov,R2))

# The reliability dataset has data for 100 individuals,
# three repeated measurements for each predictor variable.
nr <- 100
mat <- mvrnorm(nr, Rcov, mu = c(rep(-2,numrep),rep(0.9,numrep)), empirical = TRUE)

relibdata <- data.frame(x11 = mat[,1], x12 = mat[,2], x13 = mat[,3],
                x21 = mat[,4], x22 = mat[,5], x23 = mat[,6])

# Fitting a linear regression
glmfit.lin2 <- glm(y~x1+x2, family="gaussian", data=datalin)
summary(glmfit.lin2)

# Using function mmc to get measurement error corrected estimates
rcfit.lin2 <- mmc(model = 'y~x1+x2',
             type = 'linear',
             mdata = datalin,
             rdata <- relibdata,
             rep = 3,
             evar = c('x1','x2'),
             rvar = c('x11','x12','x13','x21','x22','x23'),
             bootstrap = 'FALSE')
rcfit.lin2

# Using function mmc to get measurement error corrected estimates
# with bootstrapped SE and confidence intervals
## Not run: 
rcfit.lin2 <- mmc(model = 'y~x1+x2',
             type = 'linear',
             mdata = datalin,
             rdata <- relibdata,
             rep = 3,
             evar = c('x1','x2'),
             rvar = c('x11','x12','x13','x21','x22','x23'),
             bootstrap = 'FALSE')
rcfit.lin2

## End(Not run)



####################################################################
## Example 3
## Generate data for logistic regression
## assuming that one predictor variable is measured with error
####################################################################

# Setting seed for replicability
set.seed(12345)
library(MASS)
library(mmc)

# Generating main dataset with 10,000 observations
n <- 10000
# We generate data assuming that a predictor was measured with error
# Setting parameter for between person variance
var_between <- 1
# Setting parameters for within person variance
var_within <- .3
var_total <- var_within + var_between

# Generating data with a random variable
data_truth <- as.matrix(rnorm(n, -2, var_between),ncol=1)
# Generating measurement error for the random variable
measurement_error <-  as.matrix(mvrnorm(n, 0, var_within),ncol=1)
# The 'observed' data is constructed by adding the measurement error to the generated data
data_observed <- data_truth + measurement_error

# Setting true parameter values for logistic regression
beta0 <- -2
beta1 <- 1

linpred <- beta0 + beta1*data_truth[1:n,1] 
prob = exp(linpred)/(1 + exp(linpred))
runis = runif(n,0,1)
y = ifelse(runis < prob,1,0)

data <- data.frame(y = y, x1 = data_observed[,1])


# Generating a reliability data.
# We assume that three repeated measurements are available for the predictor.
numrep <- 3
times <- 1:numrep
psi <- .8

H <- abs(outer(times, times, "-"))
Rcov<- var_between * psi^H

# The reliability dataset has data for 100 individuals,
# three repeated measurements for the predictor variable.
nr <- 100
mat <- mvrnorm(nr, Rcov, mu = rep(-2,numrep), empirical = TRUE)
d <- data.frame(x11 = mat[,1], x12 = mat[,2], x13 = mat[,3])

# Fitting a logistic model
glmfit <- glm( y~x1, family="binomial",data=data)
summary(glmfit)

# Using function mmc to get measurement error corrected estimates
rcfit <- mmc(
model = 'y ~ x1',
type = 'logistic',
mdata = data,
rdata <- d,
rep = 3,
evar = c('x1'),
rvar = c('x11','x12','x13'),
bootstrap = 'FALSE')

rcfit

# Using function mmc to get measurement error corrected estimates
# with bootstrapped SE and confidence intervals
## Not run: 
rcfit <- mmc(
model = 'y ~ x1',
type = 'logistic',
mdata = data,
rdata <- d,
rep = 3,
evar = c('x1'),
rvar = c('x11','x12','x13'),
bootstrap = 'TRUE',
boot <- 20)

rcfit

## End(Not run)



##################################################################
## Example 4
## Generate data for logistic regression
## assuming that two predictor variables are measured with error
##################################################################

# Setting seed for replicability
set.seed(12345)
library(MASS)
library(mmc)

# Generating main dataset with 10,000 observations
n <- 10000
# We generate data assuming that two predictors are measured with errors
# Setting parameters for between person covariance matrix
sigma1sq <- 1
sigma2sq <- 1
rho <- .3      # We assume that two predictor variables are correlated
# Setting parameters for within person covariance matrix
theta1sq <- .3
theta2sq <- .3
# We assume that measurement errors for two predictor variables are independent
phi <- 0

cov_between <- matrix(
c(sigma1sq,rho*sqrt(sigma1sq)*sqrt(sigma2sq),  
  rho*sqrt(sigma1sq)*sqrt(sigma2sq),sigma2sq),2,2)

cov_within <- matrix(
c(theta1sq,phi*sqrt(theta1sq)*sqrt(theta2sq),  
  phi*sqrt(theta1sq)*sqrt(theta2sq),theta2sq),2,2)

cov_total <- cov_within + cov_between

# Generating data with two random variables
data_truth <- mvrnorm(n, c(-2,0.9), cov_between, empirical = TRUE)
# Generating measurement error for the two random variables
measurement_error <-  mvrnorm(n, c(0,0), cov_within, empirical = TRUE)
# The 'observed' data is constructed by adding the measurement error to the generated data
data_observed <- data_truth + measurement_error

# Setting true parameter values for logistic regression
beta0 <- -6
beta1 <- 1
beta2 <- 2

linpred <- beta0 + beta1*data_truth[1:n,1] + beta2*data_truth[1:n,2]
prob = exp(linpred)/(1 + exp(linpred))
runis = runif(n,0,1)
y = ifelse(runis < prob,1,0)

data <- data.frame(y = y, x1 = data_observed[,1], x2 = data_observed[,2])

# Generating a reliability data.
# We assume that three repeated measurements are available, or each predictor.
numrep <- 3
times <- 1:numrep
psi <- .8

H <- abs(outer(times, times, "-"))
R1 <- sigma1sq * psi^H
R2 <- sigma2sq * psi^H
RRcov <- sqrt(theta1sq)*sqrt(theta2sq)* rho * psi^H

# Setting up a covariance structure for the reliability data.
Rcov <- rbind(cbind(R1,RRcov),cbind(RRcov,R2))

# The reliability dataset has data for 100 individuals,
# three repeated measurements for each predictor variable.
nr <- 100
mat <- mvrnorm(nr, Rcov, mu = c(rep(-2,numrep),rep(0.9,numrep)), empirical = TRUE)
d <- data.frame(x11 = mat[,1], x12 = mat[,2], x13 = mat[,3],
                x21 = mat[,4], x22 = mat[,5], x23 = mat[,6])

# Fitting a logistic model
glmfit <- glm( y~x1+x2, family="binomial",data=data)
summary(glmfit)

# Using function mmc to get measurement error corrected estimates
rcfit <- mmc(
model = 'y ~ x1 + x2',
type = 'logistic',
mdata = data,
rdata <- d,
rep = 3,
evar = c('x1','x2'),
rvar = c('x11','x12','x13','x21','x22','x23'),
bootstrap = 'FALSE')

rcfit

# Using function mmc to get measurement error corrected estimates
# with bootstrapped SE and confidence intervals
## Not run: 
rcfit <- mmc(
model = 'y ~ x1 + x2',
type = 'logistic',
mdata = data,
rdata <- d,
rep = 3,
evar = c('x1','x2'),
rvar = c('x11','x12','x13','x21','x22','x23'),
bootstrap = 'TRUE',
boot <- 20)

rcfit

## End(Not run)



##################################################################
## Example 5
## Generate data for Cox regression
## assuming that one predictor variable is measured with error
##################################################################

# Setting seed for replicability
set.seed(1234)
library(MASS)
library(survival)
library(mmc)

# Generating main dataset with 10,000 observations
n <- 10000
# We generate data assuming that a predictor is measured with error
# Setting parameters for between person variance
var_between <- 1
# Setting parameters for within person variance
var_within <- .5
var_total <- var_within + var_between

# Generating data with a random variable
data_truth <- as.matrix(rnorm(n, -2, var_between),ncol=1)
# Generating measurement error for the random variable
measurement_error <-  as.matrix(rnorm(n, 0, var_within),ncol=1)
# The 'observed' data is constructed by adding the measurement error to the generated data
data_observed <- data_truth + measurement_error

# Setting true parameter values for linear regression
beta0 <- 2
beta1 <- 1

# Now set up some parameters for the Cox model
lambdaT = 0.1 # baseline hazard
lambdaC = 0.002 # hazard of censoring

# Setting up a Cox model
hazard <- exp(beta0 + beta1*data_truth[1:n,1])
# Generate event time from a Weibull distribution
Y <- rweibull(n, shape=1, scale=lambdaT/hazard)
# Generate random censoring time from a Weibull distribution
ctime <- rweibull(n, shape=1, scale = lambdaC)

# Now set up censoring variable 
status <- numeric(n)+1 
status[Y>ctime] <- 0 # 0=censored (event not observed), 1=not censored (event observed)
y <- pmin(Y, ctime) 

# Set up a main dataset with the outcome variable and the predictor, 
# measured with error.
datacox <- data.frame(y = y, status = status, x1 = data_observed[,1])

# Generating a reliability data.
# We assume that three repeated measurements are available for the predictor.
numrep <- 3
times <- 1:numrep
psi <- .8

H <- abs(outer(times, times, "-"))
Rcov <- var_between * psi^H

# The reliability dataset has data for 100 individuals,
# three repeated measurements for the predictor variable.
nr <- 100
mat <- mvrnorm(nr, Rcov, mu = rep(-2,numrep), empirical = TRUE)
d <- data.frame(x11 = mat[,1], x12 = mat[,2], x13 = mat[,3])

# Fitting a Cox model
coxfit <- coxph( Surv(y,status)~x1, method="breslow",data=datacox)
summary(coxfit)

# Using function mmc to get measurement error corrected estimates
rcfit <- mmc(
model = 'Surv(y,status) ~ x1',
type = 'cox',
mdata = datacox,
rdata <- d,
rep = 3,
evar = c('x1'),
rvar = c('x11','x12','x13'),
bootstrap = 'FALSE')

rcfit


# Using function mmc to get measurement error corrected estimates
# with bootstrapped SE and confidence intervals
## Not run: 
rcfit <- mmc(
model = 'Surv(y,status) ~ x1',
type = 'cox',
mdata = datacox,
rdata <- d,
rep = 3,
evar = c('x1'),
rvar = c('x11','x12','x13'),
bootstrap = 'TRUE',
boot <- 20)

rcfit

## End(Not run)




######################################################################
## Example 6
## Generate data for Cox regression
## assuming that two predictor variables are measured with error
######################################################################

# Setting seed for replicability
set.seed(12345)
library(MASS)
library(survival)
library(mmc)

# Generating main dataset with 10,000 observations
n <- 10000
# We generate data assuming that two predictors are measured with errors
# Setting parameters for between person covariance matrix
sigma1sq <- 1
sigma2sq <- 1
rho <- .3      # We assume that two predictor variables are correlated
# Setting parameters for within person covariance matrix
theta1sq <- .3
theta2sq <- .3
# We assume that measurement errors for two predictor variables are independent
phi <- 0


cov_between <- matrix(
c(sigma1sq,rho*sqrt(sigma1sq)*sqrt(sigma2sq),  
  rho*sqrt(sigma1sq)*sqrt(sigma2sq),sigma2sq),2,2)

cov_within <- matrix(
c(theta1sq,phi*sqrt(theta1sq)*sqrt(theta2sq),  
  phi*sqrt(theta1sq)*sqrt(theta2sq),theta2sq),2,2)

cov_total <- cov_within + cov_between

# Generating data with two random variables
data_truth <- mvrnorm(n, c(-2,0.9), cov_between, empirical = TRUE)
# Generating measurement error for the two random variables
measurement_error <-  mvrnorm(n, c(0,0), cov_within, empirical = TRUE)
# The 'observed' data is constructed by adding the measurement error to the generated data
data_observed <- data_truth + measurement_error

# Setting true parameter values for Cox regression
beta0 <- 0.05
beta1 <- 1
beta2 <- 2

# Now set up some parameters for the Cox model
lambdaT = 0.1 # baseline hazard
lambdaC = 0.0001 # hazard of censoring

# Setting up a Cox model
hazard <- exp(beta0 + beta1*data_truth[1:n,1] + beta2*data_truth[1:n,2])
# Generate event time from a Weibull distribution
Y <- rweibull(n, shape=1, scale=lambdaT/hazard)
# Generate random censoring time from a Weibull distribution
ctime <- rweibull(n, shape=1, scale = lambdaC)

# Now set up censoring variable 
status <- numeric(n)+1 
status[Y>ctime] <- 0 # 0=censored (event not observed), 1=not censored (event observed)
y <- pmin(Y, ctime) 

# Set up a main dataset with the outcome variable and the two predictors, 
# measured with error.
datacox <- data.frame(y = y, status = status, x1 = data_observed[,1], x2 = data_observed[,2])

# Generating a reliability data.
# We assume that three repeated measurements are available, or each predictor.
numrep <- 3
times <- 1:numrep
psi <- .8

H <- abs(outer(times, times, "-"))
R1 <- sigma1sq * psi^H
R2 <- sigma2sq * psi^H
RRcov <- sqrt(theta1sq)*sqrt(theta2sq)* rho * psi^H

# Setting up a covariance structure for the reliability data.
Rcov <- rbind(cbind(R1,RRcov),cbind(RRcov,R2))

# The reliability dataset has data for 100 individuals,
# three repeated measurements for each predictor variable.
nr <- 100
mat <- mvrnorm(nr, Rcov, mu = c(rep(-2,numrep),rep(0.9,numrep)), empirical = TRUE)
d <- data.frame(x11 = mat[,1], x12 = mat[,2], x13 = mat[,3],
                x21 = mat[,4], x22 = mat[,5], x23 = mat[,6])

# Fitting a Cox model
coxfit <- coxph( Surv(y,status)~x1+x2, method="breslow",data=datacox)
summary(coxfit)

# Using function mmc to get measurement error corrected estimates
rcfit <- mmc(
model = 'Surv(y,status) ~ x1 + x2',
type = 'cox',
mdata = datacox,
rdata <- d,
rep = 3,
evar = c('x1','x2'),
rvar = c('x11','x12','x13','x21','x22','x23'),
bootstrap = 'FALSE')

rcfit



# Using function mmc to get measurement error corrected estimates
# with bootstrapped SE and confidence intervals
## Not run: 
rcfit <- mmc(
model = 'Surv(y,status) ~ x1 + x2',
type = 'cox',
mdata = datacox,
rdata <- d,
rep = 3,
evar = c('x1','x2'),
rvar = c('x11','x12','x13','x21','x22','x23'),
bootstrap = 'TRUE',
boot <- 20)

rcfit

## End(Not run)

mmc documentation built on May 1, 2019, 10:17 p.m.

Related to mmc in mmc...