Description Usage Arguments Value Examples
The function gbm_bin
implements the monotonic binning based on
the generalized boosted model (GBM).
1 | gbm_bin(x, y)
|
x |
A numeric vector |
y |
A numeric vector with 0/1 binary values |
A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary
1 2 |
$cut
[1] 0 1 2 3
$tbl
bin freq miss bads rate woe iv ks rule
1 0 708 708 87 0.1229 -0.5760 0.0328 5.70 is.na($X$)
2 1 4527 0 754 0.1666 -0.2208 0.0346 21.37 $X$ <= 0
3 2 435 0 169 0.3885 0.9358 0.0808 12.73 $X$ > 0 & $X$ <= 1
4 3 160 0 82 0.5125 1.4395 0.0757 7.47 $X$ > 1 & $X$ <= 2
5 4 58 0 43 0.7414 2.4426 0.0807 4.16 $X$ > 2 & $X$ <= 3
6 5 72 0 54 0.7500 2.4881 0.1036 0.00 $X$ > 3
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.