Nothing
#' Monotonic binning based on generalized boosted model
#'
#' The function \code{gbm_bin} implements the monotonic binning based on
#' the generalized boosted model (GBM).
#'
#' @param x A numeric vector
#' @param y A numeric vector with 0/1 binary values
#'
#' @return A list of binning outcomes, including a numeric vector with cut
#' points and a dataframe with binning summary
#'
#' @examples
#' data(hmeq)
#' gbm_bin(hmeq$DEROG, hmeq$BAD)
gbm_bin <- function(x, y) {
x_ <- x[!is.na(x)]
y_ <- y[!is.na(x)]
spc <- cor(x_, y_, method = "spearman")
set.seed(1)
m_ <- gbm::gbm(y ~ x1 + x2, distribution = "bernoulli", data = data.frame(y = y_, x1 = x_, x2 = x_),
var.monotone = c(spc / abs(spc), spc / abs(spc)),
bag.fraction = 1, n.minobsinnode = round(length(x_) / 100), n.trees = 500)
d1 <- data.frame(y = y_, x = x_, cat = gbm::predict.gbm(m_, n.trees = m_$n.trees, type = "response"))
l1 <- lapply(split(d1, d1$cat),
function(d) list(rate = abs(round(mean(d$y), 8)), maxx = max(d$x)))
l2 <- l1[Reduce(c, lapply(l1, function(l) l$rate > 0 & l$rate < 1))]
l3 <- sort(Reduce(c, lapply(l2, function(l) l$maxx)))[-length(l2)]
l4 <- manual_bin(x_, y_, l3)
return(list(cut = l3, tbl = gen_woe(add_miss(l4, x, y), l3)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.