prevalence | R Documentation |
For building and evaluating species distribution models, the porportion of presences of the species may be an issue to take into account (e.g. Jimenez-Valverde & Lobo 2006, Barbosa et al. 2013). The prevalence
function calculates this measure.
prevalence(obs, model = NULL, event = 1, na.rm = TRUE)
obs |
a vector or a factor of binary observations (e.g. 1 vs. 0, male vs. female, disease vs. no disease, etc.). This argument is ignored if 'model' is provided. |
model |
alternatively to 'obs', a binary-response model object of class "glm", "gam", "gbm", "randomForest" or "bart". If this argument is provided, 'obs' will be extracted with |
event |
the value whose prevalence we want to calculate (e.g. 1, "present", etc.). This argument is ignored if 'model' is provided. |
na.rm |
logical, whether NA values should be excluded from the calculation. The default is TRUE. |
Numeric value of the prevalence of event
in the obs
vector.
A. Marcia Barbosa
Barbosa A.M., Real R., Munoz A.R. & Brown J.A. (2013) New measures for assessing model equilibrium and prediction mismatch in species distribution models. Diversity and Distributions, in press
Jimenez-Valverde A. & Lobo J.M. (2006) The ghost of unbalanced species distribution data in geographical model predictions. Diversity and Distributions, 12: 521-524.
evenness
# calculate prevalence from binary vectors:
(x <- rep(c(0, 1), each = 5))
(y <- c(rep(0, 3), rep(1, 7)))
(z <- c(rep(0, 7), rep(1, 3)))
prevalence(x)
prevalence(y)
prevalence(z)
(w <- c(rep("yes", 3), rep("nope", 7)))
prevalence(w, event = "yes")
# calculate prevalence from a model object:
data(rotif.mods)
prevalence(mod = rotif.mods$models[[1]])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.