View source: R/datasummary_correlation.R
| datasummary_correlation | R Documentation |
The names of the variables displayed in the correlation table are the names
of the columns in the data. You can rename those columns (with or without
spaces) to produce a table of human-readable variables. See the Details and
Examples sections below, and the vignettes on the modelsummary website:
https://modelsummary.com/
https://modelsummary.com/vignettes/datasummary.html
datasummary_correlation(
data,
output = getOption("modelsummary_output", default = "default"),
method = getOption("modelsummary_method", default = "pearson"),
fmt = 2,
align = getOption("modelsummary_align", default = NULL),
add_rows = getOption("modelsummary_add_rows", default = NULL),
add_columns = getOption("modelsummary_add_columns", default = NULL),
title = getOption("modelsummary_title", default = NULL),
notes = getOption("modelsummary_notes", default = NULL),
escape = getOption("modelsummary_escape", default = TRUE),
stars = getOption("modelsummary_stars", default = FALSE),
...
)
data |
A data.frame (or tibble) |
output |
filename or object type (character string)
|
method |
character or function
|
fmt |
how to format numeric values: integer, user-supplied function, or
|
align |
A string with a number of characters equal to the number of columns in
the table (e.g.,
|
add_rows |
a data.frame (or tibble) with the same number of columns as your main table. By default, rows are appended to the bottom of the table. Positions can be defined using integers. In the
|
add_columns |
a data.frame (or tibble) with the same number of rows as your main table. |
title |
string. Cross-reference labels should be added with Quarto or Rmarkdown chunk options when applicable. When saving standalone LaTeX files, users can add a label such as |
notes |
list or vector of notes to append to the bottom of the table. |
escape |
boolean TRUE escapes or substitutes LaTeX/HTML characters which could
prevent the file from compiling/displaying. |
stars |
to indicate statistical significance
|
... |
other parameters are passed through to the table-making packages. |
Since version 2.0.0, modelsummary uses tinytable as its default table-drawing backend.
Learn more at: https://vincentarelbundock.github.io/tinytable/",
Revert to kableExtra for one session:
options(modelsummary_factory_default = 'kableExtra')
options(modelsummary_factory_latex = 'kableExtra')
options(modelsummary_factory_html = 'kableExtra')
The behavior of modelsummary can be modified by setting global options. In particular, most of the arguments for most of the package's functions cna be set using global options. For example:
options(modelsummary_output = "modelsummary_list")
options(modelsummary_statistic = '({conf.low}, {conf.high})')
options(modelsummary_stars = TRUE)
Options not specific to given arguments are listed below.
These global option changes the style of the default column headers:
options(modelsummary_model_labels = "roman")
The supported styles are: "model", "arabic", "letters", "roman", "(arabic)", "(letters)", "(roman)"
modelsummary supports 6 table-making packages: tinytable, kableExtra, gt,
flextable, huxtable, and DT. Some of these packages have overlapping
functionalities. To change the default backend used for a specific file
format, you can use ' the options function:
options(modelsummary_factory_html = 'kableExtra')
options(modelsummary_factory_word = 'huxtable')
options(modelsummary_factory_png = 'gt')
options(modelsummary_factory_latex = 'gt')
options(modelsummary_factory_latex_tabular = 'kableExtra')
Change the look of tables in an automated and replicable way, using the modelsummary theming functionality. See the vignette: https://modelsummary.com/vignettes/appearance.html
modelsummary_theme_gt
modelsummary_theme_kableExtra
modelsummary_theme_huxtable
modelsummary_theme_flextable
modelsummary_theme_dataframe
modelsummary can use two sets of packages to extract information from
statistical models: the easystats family (performance and parameters)
and broom. By default, it uses easystats first and then falls back on
broom in case of failure. You can change the order of priorities or include
goodness-of-fit extracted by both packages by setting:
options(modelsummary_get = "easystats")
options(modelsummary_get = "broom")
options(modelsummary_get = "all")
The "all" option (default) means easystats then broom.
By default, LaTeX tables enclose all numeric entries in the \num{} command
from the siunitx package. To prevent this behavior, or to enclose numbers
in dollar signs (for LaTeX math mode), users can call:
options(modelsummary_format_numeric_latex = "plain")
options(modelsummary_format_numeric_latex = "mathmode")
A similar option can be used to display numerical entries using MathJax in HTML tables:
options(modelsummary_format_numeric_html = "mathjax")
When creating LaTeX via the tinytable backend (default in version 2.0.0 and later), it is useful to include the following commands in the LaTeX preamble of your documents. These commands are automatically added to the preamble when compiling Rmarkdown or Quarto documents, except when the modelsummary() calls are cached.
\usepackage{tabularray}
\usepackage{float}
\usepackage{graphicx}
\usepackage[normalem]{ulem}
\UseTblrLibrary{booktabs}
\UseTblrLibrary{siunitx}
\newcommand{\tinytableTabularrayUnderline}[1]{\underline{#1}}
\newcommand{\tinytableTabularrayStrikeout}[1]{\sout{#1}}
\NewTableCommand{\tinytableDefineColor}[3]{\definecolor{#1}{#2}{#3}}
library(modelsummary)
# clean variable names (base R)
dat <- mtcars[, c("mpg", "hp")]
colnames(dat) <- c("Miles / Gallon", "Horse Power")
datasummary_correlation(dat)
# clean variable names (tidyverse)
library(tidyverse)
dat <- mtcars %>%
select(`Miles / Gallon` = mpg,
`Horse Power` = hp)
datasummary_correlation(dat)
# `correlation` package objects
if (requireNamespace("correlation", quietly = TRUE)) {
co <- correlation::correlation(mtcars[, 1:4])
datasummary_correlation(co)
# add stars to easycorrelation objects
datasummary_correlation(co, stars = TRUE)
}
# alternative methods
datasummary_correlation(dat, method = "pearspear")
# custom function
cor_fun <- function(x) cor(x, method = "kendall")
datasummary_correlation(dat, method = cor_fun)
# rename columns alphabetically and include a footnote for reference
note <- sprintf("(%s) %s", letters[1:ncol(dat)], colnames(dat))
note <- paste(note, collapse = "; ")
colnames(dat) <- sprintf("(%s)", letters[1:ncol(dat)])
datasummary_correlation(dat, notes = note)
# `datasummary_correlation_format`: custom function with formatting
dat <- mtcars[, c("mpg", "hp", "disp")]
cor_fun <- function(x) {
out <- cor(x, method = "kendall")
datasummary_correlation_format(
out,
fmt = 2,
upper_triangle = "x",
diagonal = ".")
}
datasummary_correlation(dat, method = cor_fun)
# use kableExtra and psych to color significant cells
library(psych)
library(kableExtra)
dat <- mtcars[, c("vs", "hp", "gear")]
cor_fun <- function(dat) {
# compute correlations and format them
correlations <- data.frame(cor(dat))
correlations <- datasummary_correlation_format(correlations, fmt = 2)
# calculate pvalues using the `psych` package
pvalues <- psych::corr.test(dat)$p
# use `kableExtra::cell_spec` to color significant cells
for (i in 1:nrow(correlations)) {
for (j in 1:ncol(correlations)) {
if (pvalues[i, j] < 0.05 && i != j) {
correlations[i, j] <- cell_spec(correlations[i, j], background = "pink")
}
}
}
return(correlations)
}
# The `escape=FALSE` is important here!
datasummary_correlation(dat, method = cor_fun, escape = FALSE)
Arel-Bundock V (2022). “modelsummary: Data and Model Summaries in R.” Journal of Statistical Software, 103(1), 1-23. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v103.i01")}.'
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.