Nothing
#' Generate a correlation table for all numeric variables in your dataset.
#'
#' The names of the variables displayed in the correlation table are the names
#' of the columns in the `data`. You can rename those columns (with or without
#' spaces) to produce a table of human-readable variables. See the Details and
#' Examples sections below, and the vignettes on the `modelsummary` website:
#' * https://modelsummary.com/
#' * https://modelsummary.com/articles/datasummary.html
#'
#' @inheritParams datasummary
#' @inheritParams modelsummary
#' @param method character or function
#' \itemize{
#' \item character: "pearson", "kendall", "spearman", or "pearspear"
#' (Pearson correlations above and Spearman correlations below the diagonal)
#' \item function: takes a data.frame with numeric columns and returns a
#' square matrix or data.frame with unique row.names and colnames
#' corresponding to variable names. Note that the
#' `datasummary_correlation_format` can often be useful for formatting the
#' output of custom correlation functions.
#' }
#' @template citation
#' @template options
#' @param ... other parameters are passed through to the table-making
#' packages.
#' @export
#' @section Examples:
#' ```{r, eval = identical(Sys.getenv("pkgdown"), "true")}
#' library(modelsummary)
#'
#' # clean variable names (base R)
#' dat <- mtcars[, c("mpg", "hp")]
#' colnames(dat) <- c("Miles / Gallon", "Horse Power")
#' datasummary_correlation(dat)
#'
#' # clean variable names (tidyverse)
#' library(tidyverse)
#' dat <- mtcars %>%
#' select(`Miles / Gallon` = mpg,
#' `Horse Power` = hp)
#' datasummary_correlation(dat)
#'
#' # `correlation` package objects
#' if (requireNamespace("correlation", quietly = TRUE)) {
#' co <- correlation::correlation(mtcars[, 1:4])
#' datasummary_correlation(co)
#'
#' # add stars to easycorrelation objects
#' datasummary_correlation(co, stars = TRUE)
#' }
#'
#' # alternative methods
#' datasummary_correlation(dat, method = "pearspear")
#'
#' # custom function
#' cor_fun <- function(x) cor(x, method = "kendall")
#' datasummary_correlation(dat, method = cor_fun)
#'
#' # rename columns alphabetically and include a footnote for reference
#' note <- sprintf("(%s) %s", letters[1:ncol(dat)], colnames(dat))
#' note <- paste(note, collapse = "; ")
#'
#' colnames(dat) <- sprintf("(%s)", letters[1:ncol(dat)])
#'
#' datasummary_correlation(dat, notes = note)
#'
#' # `datasummary_correlation_format`: custom function with formatting
#' dat <- mtcars[, c("mpg", "hp", "disp")]
#'
#' cor_fun <- function(x) {
#' out <- cor(x, method = "kendall")
#' datasummary_correlation_format(
#' out,
#' fmt = 2,
#' upper_triangle = "x",
#' diagonal = ".")
#' }
#'
#' datasummary_correlation(dat, method = cor_fun)
#'
#' # use kableExtra and psych to color significant cells
#' library(psych)
#' library(kableExtra)
#'
#' dat <- mtcars[, c("vs", "hp", "gear")]
#'
#' cor_fun <- function(dat) {
#' # compute correlations and format them
#' correlations <- data.frame(cor(dat))
#' correlations <- datasummary_correlation_format(correlations, fmt = 2)
#'
#' # calculate pvalues using the `psych` package
#' pvalues <- psych::corr.test(dat)$p
#'
#' # use `kableExtra::cell_spec` to color significant cells
#' for (i in 1:nrow(correlations)) {
#' for (j in 1:ncol(correlations)) {
#' if (pvalues[i, j] < 0.05 && i != j) {
#' correlations[i, j] <- cell_spec(correlations[i, j], background = "pink")
#' }
#' }
#' }
#' return(correlations)
#' }
#'
#' # The `escape=FALSE` is important here!
#' datasummary_correlation(dat, method = cor_fun, escape = FALSE)
#' ```
datasummary_correlation <- function(data,
output = 'default',
method = "pearson",
fmt = 2,
align = NULL,
add_rows = NULL,
add_columns = NULL,
title = NULL,
notes = NULL,
escape = TRUE,
stars = FALSE,
...) {
## settings
settings_init(settings = list(
"function_called" = "datasummary_correlation"
))
# sanity checks
tmp <- sanitize_output(output) # before sanitize_escape
output_format <- tmp$output_format
output_factory <- tmp$output_factory
output_file <- tmp$output_file
sanitize_escape(escape) # after sanitize_output
sanity_add_columns(add_columns)
sanity_align(align)
if (inherits(data, "data.table")) {
data <- as.data.frame(data, check.names = FALSE)
}
easycorrelation <- inherits(data, "easycorrelation")
if (isFALSE(easycorrelation) && !isFALSE(stars)) {
msg <- "The `stars` argument of the `datasummary_correlation()` function is only supported when `x` is an object produced by the `correlation` package."
insight::format_error(msg)
}
if (easycorrelation) {
insight::check_if_installed("correlation")
easycorrelation <- TRUE
s <- summary(data, redundant = TRUE)
data <- as.matrix(data)
data <- as.data.frame(data)
# store the p values in a "attribute" of the object
# this is retrieved and used in the `_format()` function.
attr(data, "p") <- attr(s, "p")
}
any_numeric <- any(sapply(data, is.numeric) == TRUE)
if (any_numeric == FALSE) {
stop("`datasummary_correlation` can only summarize numeric data columns.")
}
checkmate::assert(
checkmate::check_choice(
method,
c("pearson", "kendall", "spearman", "pearspear")),
checkmate::check_function(method))
# assign correlation computation function
if (is.function(method)) {
fn <- method
} else if (method == "pearspear") {
fn <- correlation_pearspear
} else {
fn <- function(x) stats::cor(
x,
use = "pairwise.complete.obs",
method = method)
}
# subset numeric and compute correlation
if (easycorrelation == FALSE) {
out <- data.frame(data, check.names = FALSE) # data.table & tibble
out <- data[, sapply(data, is.numeric), drop = FALSE]
out <- fn(out)
} else {
out <- data
}
if ((!is.matrix(out) && !inherits(out, "data.frame")) ||
is.null(row.names(out)) ||
is.null(colnames(out)) ||
nrow(out) != ncol(out)) {
stop("The function supplied to the `method` argument did not return a square matrix or data.frame with row.names and colnames.")
}
if (easycorrelation) {
out <- datasummary_correlation_format(
out,
fmt = fmt,
diagonal = "1",
upper_triangle = ".",
stars = stars)
} else if (is.character(method)) {
if (method == "pearspear") {
out <- datasummary_correlation_format(
out,
fmt = fmt,
diagonal = "1")
} else {
out <- datasummary_correlation_format(
out,
fmt = fmt,
diagonal = "1",
upper_triangle = ".")
}
} else {
out <- datasummary_correlation_format(
out,
fmt = fmt)
}
col_names <- colnames(out)
out <- cbind(rowname = row.names(out), out)
colnames(out) <- c(' ', col_names)
if (is.null(align)) {
ncols <- ncol(out)
if (!is.null(add_columns)) {
ncols <- ncols + ncol(add_columns)
}
align <- paste0('l', strrep('r', ncols - 1))
}
# labelled data
dict <- get_variable_labels_data(data)
out[, 1] <- replace_dict(out[, 1], dict)
colnames(out) <- replace_dict(colnames(out), dict)
out <- factory(out,
align = align,
hrule = NULL,
output = output,
add_rows = add_rows,
add_columns = add_columns,
notes = notes,
title = title,
escape = escape,
output_factory = output_factory,
output_format = output_format,
output_file = output_file,
...)
# invisible return
if (!is.null(output_file) ||
output == "jupyter" ||
(output == "default" && settings_equal("output_default", "jupyter"))) {
settings_rm()
return(invisible(out))
# visible return
} else {
settings_rm()
return(out)
}
}
correlation_pearspear <- function(x) {
pea <- stats::cor(
x,
use = "pairwise.complete.obs",
method = "pearson"
)
spe <- stats::cor(
x,
use = "pairwise.complete.obs",
method = "spearman"
)
pea[lower.tri(pea)] <- spe[lower.tri(spe)]
return(pea)
}
#' Format the content of a correlation table
#'
#' Mostly for internal use, but can be useful when users supply a function to
#' the `method` argument of `datasummary_correlation`.
#' @inheritParams datasummary_correlation
#' @param x square numeric matrix
#' @param leading_zero boolean. If `FALSE`, leading zeros are removed
#' @param diagonal character or NULL. If character, all elements of the
#' diagonal are replaced by the same character (e.g., "1").
#' @param upper_triangle character or NULL. If character, all elements of the
#' upper triangle are replaced by the same character (e.g., "" or ".").
#' @export
#' @examples
#' library(modelsummary)
#'
#' dat <- mtcars[, c("mpg", "hp", "disp")]
#'
#' cor_fun <- function(x) {
#' out <- cor(x, method = "kendall")
#' datasummary_correlation_format(
#' out,
#' fmt = 2,
#' upper_triangle = "x",
#' diagonal = ".")
#' }
#'
#' datasummary_correlation(dat, method = cor_fun)
datasummary_correlation_format <- function(
x,
fmt,
leading_zero = FALSE,
diagonal = NULL,
upper_triangle = NULL,
stars = FALSE) {
# sanity
checkmate::assert_character(diagonal, len = 1, null.ok = TRUE)
checkmate::assert_character(upper_triangle, len = 1, null.ok = TRUE)
checkmate::assert_flag(leading_zero)
p <- attr(x, "p")
out <- data.frame(x, check.names = FALSE)
for (i in seq_along(out)) {
fmt <- sanitize_fmt(fmt)
out[[i]] <- fmt(out[[i]])
if (leading_zero == FALSE) {
out[[i]] <- gsub('0\\.', '\\.', out[[i]])
}
}
# before triangle, otherwise we get empty cells with stars
if (!is.null(p) && isTRUE(stars)) {
st <- make_stars(p, stars)
st <- st[, 2:ncol(st)]
for (j in 1:ncol(out)) {
out[, j] <- paste0(out[, j], st[, j])
}
}
for (i in 1:nrow(out)) {
for (j in 1:ncol(out)) {
if (!is.null(upper_triangle)) {
out[i, j] <- ifelse(i < j, upper_triangle, out[i, j])
}
if (!is.null(diagonal)) {
out[i, j] <- ifelse(i == j, diagonal, out[i, j])
}
}
}
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.