Nothing
test_that("test that filter_pactr-class constructs properly", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory, peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
expect_true(all(class(filter_class) == c("filter_pactr", "R6")))
expect_equal(address(mpactr_class), address(filter_class$mpactr_data))
expect_true(exists("list_of_summaries", filter_class$logger))
expect_true(all(sapply(filter_class$logger[["list_of_summaries"]],
is.null) == TRUE))
})
test_that("get_log returns an error
when an incorrect fitler argument is provided", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
expect_error(filter_class$get_log(filter = "cv"),
"`filter` must be one of mpactr's")
})
test_that("get_log returns an error when the
fitler argument provided has not yet been run (e.g., not in the log)", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
er <- "`filter` mispicked has not yet been applied to the data"
expect_error(filter_class$get_log(filter = "mispicked"), er)
})
test_that("get_log returns the correct fitler summary list", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory, peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(
ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum"
)
mispicked_summary <- filter_class$get_log(filter = "mispicked")
expect_type(mispicked_summary, "list")
expect_equal(length(mispicked_summary), 2)
expect_equal(length(mispicked_summary$passed_ions), 1233)
})
test_that("get_log returns the correct fitler
summary list when group is supplied", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$filter_blank()
filter_class$parse_ions_by_group(group_threshold = 0.01)
filter_class$apply_group_filter("Blanks", remove_ions = TRUE)
group_summary <- filter_class$get_log(filter = "group",
group = "Blanks")
expect_type(group_summary, "list")
})
test_that("get_mispicked_ions returns error if
check_mismatched_peaks has not been called", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
expect_error(filter_class$get_mispicked_ions(),
"The mispicked filter has not yet been")
})
test_that("get_mispicked_ions correctly returns
the check_mismatched_peaks list", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(
ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum"
)
mispicked_groups <- filter_class$get_mispicked_ions()
expect_equal(class(mispicked_groups), c("data.table", "data.frame"))
expect_equal(length(mispicked_groups), 2)
expect_equal(names(mispicked_groups), c("main_ion", "similar_ions"))
})
test_that("get_group_averages calculates a group table", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(
ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum"
)
avgs <- filter_class$get_group_averages()
expect_equal(class(avgs), c("data.table", "data.frame"))
expect_equal(nrow(avgs), (1233 * 6))
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(
ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum"
)
filter_class$filter_blank()
filter_class$parse_ions_by_group(group_threshold = 0.01)
filter_class$apply_group_filter("Blanks", remove_ions = TRUE)
avgs <- filter_class$get_group_averages()
expect_equal(class(avgs), c("data.table", "data.frame"))
expect_equal(nrow(avgs), (484 * 6))
})
test_that("get_cv returns the cv filter has been applied", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(
ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum"
)
filter_class$filter_blank()
filter_class$parse_ions_by_group(group_threshold = 0.01)
filter_class$apply_group_filter("Blanks", remove_ions = TRUE)
expect_error(filter_class$get_cv(), "The cv filter has not yet")
filter_class$cv_filter(cv_threshold = 0.2, cv_params = c("mean"))
cv <- filter_class$get_cv()
expect_equal(class(cv), c("data.table", "data.frame"))
})
test_that("Test that mpactr can be printed from the filter-pactR class", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
expect_output(filter_class$print())
})
test_that("is_filter_run correctly assesses if a filter has been run", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(
ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum"
)
filter_class$filter_blank()
filter_class$parse_ions_by_group(group_threshold = 0.01)
filter_class$apply_group_filter("Blanks", remove_ions = TRUE)
expect_true(filter_class$is_filter_run(filter = "group",
group = "Blanks"))
expect_false(filter_class$is_filter_run(filter = "insource"))
})
test_that("get_log returns an error when
an incorrect fitler argument is provided", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
expect_error(filter_class$get_log(filter = "cv"),
"`filter` must be one of mpactr's")
})
test_that("get_log returns an error when the fitler
argument provided has not yet been run (e.g., not in the log)", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
err_msg <- "`filter` mispicked has not yet been applied to the data"
expect_error(filter_class$get_log(filter = "mispicked"), err_msg)
})
test_that("get_log returns the correct fitler summary list", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum")
mispicked_summary <- filter_class$get_log(filter = "mispicked")
expect_type(mispicked_summary, "list")
expect_equal(length(mispicked_summary), 2)
expect_equal(length(mispicked_summary$passed_ions), 1233)
})
test_that("get_mispicked_ions returns error if
check_mismatched_peaks has not been called", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
expect_error(filter_class$get_mispicked_ions(),
"The mispicked filter has not yet been")
})
test_that("get_mispicked_ions correctly
returns the check_mismatched_peaks list", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum")
mispicked_groups <- filter_class$get_mispicked_ions()
expect_equal(class(mispicked_groups), c("data.table", "data.frame"))
expect_equal(length(mispicked_groups), 2)
expect_equal(names(mispicked_groups), c("main_ion", "similar_ions"))
})
test_that("get_group_averages calculates a group table", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum")
avgs <- filter_class$get_group_averages()
expect_equal(class(avgs), c("data.table", "data.frame"))
expect_equal(nrow(avgs), (1233 * 6))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum")
filter_class$filter_blank()
filter_class$parse_ions_by_group(group_threshold = 0.01)
filter_class$apply_group_filter("Blanks", remove_ions = TRUE)
avgs <- filter_class$get_group_averages()
expect_equal(class(avgs), c("data.table", "data.frame"))
expect_equal(nrow(avgs), (484 * 6))
})
test_that("get_cv returns the cv filter has been applied", {
directory <- "exttestdata"
peak_table_name <- "102623_peaktable_coculture_simple.csv"
meta_data_name <- "102623_metadata_correct.csv"
meta <- data.table(read_csv(test_path(directory,
meta_data_name),
show_col_types = FALSE))
pt_list <- progenesis_formatter(test_path(directory,
peak_table_name))
mpactr_class <- mpactr$new(
pt_list,
meta
)
mpactr_class$setup()
filter_class <- filter_pactr$new(mpactr_class)
filter_class$check_mismatched_peaks(ringwin = 0.5,
isowin = 0.01,
trwin = 0.005,
max_iso_shift = 3,
merge_peaks = TRUE,
merge_method = "sum")
filter_class$filter_blank()
filter_class$parse_ions_by_group(group_threshold = 0.01)
filter_class$apply_group_filter("Blanks", remove_ions = TRUE)
expect_error(filter_class$get_cv(), "The cv filter has not yet")
filter_class$cv_filter(cv_threshold = 0.2, cv_params = c("mean"))
cv <- filter_class$get_cv()
expect_equal(class(cv), c("data.table", "data.frame"))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.