Description Usage Arguments Value Author(s) See Also Examples
Generalized Laguerre polynomials as computed by orthopolynom.
1 |
degree |
degree of polynomial |
alpha |
generalization constant |
indeterminate |
indeterminate |
normalized |
provide normalized coefficients |
a mpoly object or mpolyList object
David Kahle calling code from the orthopolynom package
orthopolynom::glaguerre.polynomials()
,
http://en.wikipedia.org/wiki/Laguerre_polynomials
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | laguerre(0)
laguerre(1)
laguerre(2)
laguerre(3)
laguerre(4)
laguerre(5)
laguerre(6)
laguerre(2)
laguerre(2, normalized = TRUE)
laguerre(0:5)
laguerre(0:5, normalized = TRUE)
laguerre(0:5, indeterminate = "t")
# visualize the laguerre polynomials
library(ggplot2); theme_set(theme_classic())
library(tidyr)
s <- seq(-5, 20, length.out = 201)
N <- 5 # number of laguerre polynomials to plot
(lagPolys <- laguerre(0:N))
# see ?bernstein for a better understanding of
# how the code below works
df <- data.frame(s, as.function(lagPolys)(s))
names(df) <- c("x", paste0("L_", 0:N))
mdf <- gather(df, degree, value, -x)
qplot(x, value, data = mdf, geom = "line", color = degree)
qplot(x, value, data = mdf, geom = "line", color = degree) +
coord_cartesian(ylim = c(-25, 25))
# laguerre polynomials are orthogonal with respect to the exponential kernel:
L2 <- as.function(laguerre(2))
L3 <- as.function(laguerre(3))
L4 <- as.function(laguerre(4))
w <- dexp
integrate(function(x) L2(x) * L3(x) * w(x), lower = 0, upper = Inf)
integrate(function(x) L2(x) * L4(x) * w(x), lower = 0, upper = Inf)
integrate(function(x) L3(x) * L4(x) * w(x), lower = 0, upper = Inf)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.