msaedb: EBLUPs under Multivariate Fay Herriot Model with Difference...

Description Usage Arguments Value Examples

Description

This function produces EBLUPs, MSE, and aggregation of Multivariate SAE with Difference Benchmarking

Usage

1
2
3
4
5
6
7
8
9
msaedb(
  formula,
  vardir,
  weight,
  samevar = FALSE,
  MAXITER = 100,
  PRECISION = 1e-04,
  data
)

Arguments

formula

List of formula that describe the fitted model

vardir

Sampling variances of direct estimations,if it is included in data frame so it is the vector with the name of sampling variances.if it is not, it is a data frame of sampling variance in order : var1, cov12,.,cov1r,var2,cov23,.,cov2r,.,cov(r-1)(r),var(r)

weight

Known proportion of units in small areas, where sum from d=1 to D of Wrd = 1 . d = 1 ... D is the number of small areas, and r = 1 ... R is the number of response variables

samevar

Whether the variances of the data are same or not. Logical input with default FALSE

MAXITER

Maximum number of iteration in Fisher-scoring algorithm with default 100

PRECISION

Limit of Fisher-scoring convergence tolerance with default 1e-4

data

The data frame

Value

This function returns a list of the following objects:

MSAE_Eblup

A dataframe with the values of the EBLUPs estimators

MSE_Eblup

A dataframe with the values of estimated mean square errors of EBLUPs estimators

randomEffect

A dataframe with the values of the random effect estimators

Rmatrix

A block diagonal matrix composed of sampling errors

fit

A list containing the following objects:

difference_benchmarking

a list containing the following objects:

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
##load dataset
data(datamsaeDB)

#Compute Fitted model for Y1, Y2, and Y3
#Y1 ~ X1 + X2
#Y2 ~ X2
#Y3 ~ X1

##Using parameter 'data'
formula = list(f1 = Y1~X1+X2,
               f2 = Y2~X2,
               f3 = Y3~X1)
vardir = c("v1","v12","v13","v2","v23","v3")
weight = c("w1","w2","w3")
msaeDB <- msaedb(formula, vardir, weight, data=datamsaeDB)

##Do not use parameter 'data'
formula = list(f1 = datamsaeDB$Y1~datamsaeDB$X1+datamsaeDB$X2,
               f2 = datamsaeDB$Y2~datamsaeDB$X2,
               f3 = datamsaeDB$Y3~datamsaeDB$X1)
vardir = datamsaeDB[,c("v1","v12","v13","v2","v23","v3")]
weight = datamsaeDB[,c("w1","w2","w3")]
msaeDB_d <- msaedb(formula, vardir, weight)

msaeDB$MSAE_Eblup       #to see EBLUP Estimators
msaeDB$MSE_Eblup        #to see estimated MSE of EBLUP estimators
msaeDB$difference_benchmarking$Estimation   #to see Benchmarked EBLUP Estimators
msaeDB$difference_benchmarking$MSE_DB       #to see estimated MSE of Benchmarked EBLUP Estimators
msaeDB$difference_benchmarking$Aggregation  #to see the aggregation of, benchmarking.

msaeDB documentation built on April 8, 2021, 5:07 p.m.