Nothing
#' Developer documentation: censoring model object
#'
#' A list giving information about censored states, their labels in the data
#' and what true states they represent.
#'
#' @name cmodel.object
#' @return \item{ncens}{The number of distinct values used for censored
#' observations in the \code{state} data supplied to \code{\link{msm}}.}
#' \item{censor}{A vector of length \code{ncens}, giving the labels used for
#' censored states in the data.} \item{states}{A vector obtained by
#' \code{unlist()}ing a list with \code{ncens} elements, each giving the set of
#' true states that an observation with this label could be.}
#' \item{index}{Index into \code{states} for the first state corresponding to
#' each \code{censor}, plus an extra \code{length(states)+1}.}
#' @seealso \code{\link{msm.object}}.
NULL
#' Developer documentation: model for covariates on misclassification
#' probabilities
#'
#' A list representing the model for covariates on misclassification
#' probabilities.
#'
#' @name ecmodel.object
#' @return \item{npars}{Number of covariate effect parameters. This is defined
#' as the number of covariates on misclassification (with factors expanded as
#' contrasts) multiplied by the number of allowed misclassifications in the
#' model. } \item{ndpars}{Number of distinct covariate effect parameters, as
#' \code{npars}, but after any equality constraints have been applied.}
#' \item{ncovs}{Number of covariates on misclassification, with factors
#' expanded as contrasts.} \item{constr}{List of equality constraints on these
#' covariate effects, as supplied in the \code{miscconstraint} argument to
#' \code{\link{msm}}.} \item{covlabels}{Names / labels of these covariates in
#' the model matrix (see \code{\link{model.matrix.msm}}).} \item{inits}{Initial
#' values for these covariate effects, as a vector formed from the
#' \code{misccovinits} list supplied to \code{\link{msm}}.}
#' \item{covmeans}{Means of these covariates in the data (excluding data not
#' required to fit the model, such as observations with missing data in other
#' elements or subjects' last observations). This includes means of 0/1 factor
#' contrasts as well as continuous covariates (for historic reasons, which may
#' not be sensible).}
#' @seealso \code{\link{msm.object}}.
NULL
#' Developer documentation: misclassification model structure object
#'
#' A list giving information about the misclassifications assumed in a
#' multi-state model fitted with the \code{ematrix} argument of
#' \code{\link{msm}}. Returned in a fitted \code{\link{msm}} model object.
#' This information is converted internally to a \code{hmodel} object (see
#' \code{\link{hmodel.object}}) for use in likelihood computations.
#'
#' @name emodel.object
#' @return \item{nstates}{Number of states (same as \code{qmodel$nstates}).}
#' \item{npars}{Number of allowed misclassifications, equal to
#' \code{sum(imatrix)}.} \item{imatrix}{Indicator matrix for allowed
#' misclassifications. This has \eqn{(r,s)} entry 1 if misclassification of
#' true state \eqn{r} as observed state \eqn{s} is possible. diagonal entries
#' are arbitrarily set to 0.} \item{ematrix}{Matrix of initial values for the
#' misclassification probabilities, supplied as the \code{ematrix} argument of
#' \code{\link{msm}}.} \item{inits}{Vector of these initial values, reading
#' across rows of \code{qmatrix} and excluding the diagonal and disallowed
#' transitions.} \item{constr}{Indicators for equality constraints on baseline
#' misclassification probabilities, taken from the \code{econstraint} argument
#' to \code{\link{msm}}, and mapped if necessary to the set (1,2,3,...)}
#' \item{ndpars}{Number of distinct misclassification probabilities, after
#' applying equality constraints.} \item{nipars}{Number of initial state
#' occupancy probabilities being estimated. This is zero if
#' \code{est.initprobs=FALSE}, otherwise equal to the number of states.}
#' \item{initprobs}{Initial state occupancy probabilities, as supplied to
#' \code{\link{msm}} (initial values before estimation, if
#' \code{est.initprobs=TRUE}.)} \item{est.initprobs}{Are initial state
#' occupancy probabilities estimated (\code{TRUE} or \code{FALSE}), as supplied
#' in the \code{est.initprobs} argument of \code{\link{msm}}.}
#' @seealso \code{\link{msm.object}},\code{\link{qmodel.object}},
#' \code{\link{hmodel.object}}.
NULL
#' Developer documentation: hidden Markov model structure object
#'
#' A list giving information about the models for the outcome data
#' conditionally on the states of a hidden Markov model. Used in internal
#' computations, and returned in a fitted \code{\link{msm}} model object.
#'
#' @name hmodel.object
#' @return \item{hidden}{\code{TRUE} for hidden Markov models, \code{FALSE}
#' otherwise.} \item{nstates}{Number of states, the same as
#' \code{qmodel$nstates}.} \item{fitted}{\code{TRUE} if the parameter values in
#' \code{pars} are the maximum likelihood estimates, \code{FALSE} if they are
#' the initial values.} \item{models}{The outcome distribution for each hidden
#' state. A vector of length \code{nstates} whose \eqn{r}th entry is the index
#' of the state \eqn{r} outcome distributions in the vector of supported
#' distributions. The vector of supported distributions is given in full by
#' \code{msm:::.msm.HMODELS}: the first few are 1 for categorical outcome, 2
#' for identity, 3 for uniform and 4 for normal. } \item{labels}{String
#' identifying each distribution in \code{models}.} \item{npars}{Vector of
#' length \code{nstates} giving the number of parameters in each outcome
#' distribution, excluding covariate effects.} \item{nipars}{Number of initial
#' state occupancy probabilities being estimated. This is zero if
#' \code{est.initprobs=FALSE}, otherwise equal to the number of states.}
#' \item{totpars}{Total number of parameters, equal to \code{sum(npars)}. }
#' \item{pars}{A vector of length \code{totpars}, made from concatenating a
#' list of length \code{nstates} whose \eqn{r}th component is vector of the
#' parameters for the state \eqn{r} outcome distribution. } \item{plabs}{List
#' with the names of the parameters in \code{pars}.} \item{parstate}{A vector
#' of length \code{totpars}, whose \eqn{i}th element is the state corresponding
#' to the \eqn{i}th parameter.} \item{firstpar}{A vector of length
#' \code{nstates} giving the index in \code{pars} of the first parameter for
#' each state.} \item{locpars}{Index in \code{pars} of parameters which can
#' have covariates on them. } \item{initprobs}{Initial state occupancy
#' probabilities, as supplied to \code{\link{msm}} (initial values before
#' estimation, if \code{est.initprobs=TRUE}.)} \item{est.initprobs}{Are initial
#' state occupancy probabilities estimated (\code{TRUE} or \code{FALSE}), as
#' supplied in the \code{est.initprobs} argument of \code{\link{msm}}.}
#' \item{ncovs}{Number of covariate effects per parameter in \code{pars}, with,
#' e.g. factor contrasts expanded.} \item{coveffect}{Vector of covariate
#' effects, of length \code{sum(ncovs)}.} \item{covlabels}{Labels of these
#' effects.} \item{coveffstate}{Vector indicating state corresponding to each
#' element of \code{coveffect}.} \item{ncoveffs}{Number of covariate effects on
#' HMM outcomes, equal to \code{sum(ncovs)}.} \item{nicovs}{Vector of length
#' \code{nstates-1} giving the number of covariate effects on each initial
#' state occupancy probability (log relative to the baseline probability).}
#' \item{icoveffect}{Vector of length \code{sum(nicovs)} giving covariate
#' effects on initial state occupancy probabilities.} \item{nicoveffs}{Number
#' of covariate effects on initial state occupancy probabilities, equal to
#' \code{sum(nicovs)}.} \item{constr}{Constraints on (baseline) hidden Markov
#' model outcome parameters, as supplied in the \code{hconstraint} argument of
#' \code{\link{msm}}, excluding covariate effects, converted to a vector and
#' mapped to the set 1,2,3,\ldots{} if necessary.} \item{covconstr}{Vector of
#' constraints on covariate effects in hidden Markov outcome models, as
#' supplied in the \code{hconstraint} argument of \code{\link{msm}}, excluding
#' baseline parameters, converted to a vector and mapped to the set
#' 1,2,3,\ldots{} if necessary.} \item{ranges}{Matrix of range restrictions for
#' HMM parameters, including those given to the \code{hranges} argument to
#' \code{\link{msm}}.} \item{foundse}{\code{TRUE} if standard errors are
#' available for the estimates.} \item{initpmat}{Matrix of initial state
#' occupancy probabilities with one row for each subject (estimated if
#' \code{est.initprobs=TRUE}).} \item{ci}{Confidence intervals for baseline HMM
#' outcome parameters.} \item{covci}{Confidence intervals for covariate effects
#' in HMM outcome models.}
#' @seealso \code{\link{msm.object}},\code{\link{qmodel.object}},
#' \code{\link{emodel.object}}.
NULL
#' Fitted msm model objects
#'
#' The \code{\link{msm}} function returns a list with the following components.
#' These are intended for developers and confident users. To extract results
#' from fitted model objects, functions such as \code{\link{qmatrix.msm}} or
#' \code{\link{print.msm}} should be used instead.
#'
#' @name msm.object
#' @return \item{call}{The original call to \code{\link{msm}}, as returned by
#' \code{\link{match.call}}.} \item{Qmatrices}{A list of matrices. The first
#' component, labelled \code{logbaseline}, is a matrix containing the estimated
#' transition intensities on the log scale with any covariates fixed at their
#' means in the data (or at zero, if \code{center=FALSE}). The component
#' labelled \code{baseline} is the equivalent on the untransformed scale. Each
#' remaining component is a matrix giving the linear effects of the labelled
#' covariate on the matrix of log intensities. To extract an estimated
#' intensity matrix on the natural scale, at an arbitrary combination of
#' covariate values, use the function \code{\link{qmatrix.msm}}. }
#' \item{QmatricesSE}{The standard error matrices corresponding to
#' \code{Qmatrices}. } \item{QmatricesL,QmatricesU}{Corresponding lower and
#' upper symmetric confidence limits, of width 0.95 unless specified otherwise
#' by the \code{cl} argument. } \item{Ematrices}{A list of matrices. The first
#' component, labelled \code{logitbaseline}, is the estimated misclassification
#' probability matrix (expressed as as log odds relative to the probability of
#' the true state) with any covariates fixed at their means in the data (or at
#' zero, if \code{center=FALSE}). The component labelled \code{baseline} is the
#' equivalent on the untransformed scale. Each remaining component is a matrix
#' giving the linear effects of the labelled covariate on the matrix of logit
#' misclassification probabilities. To extract an estimated misclassification
#' probability matrix on the natural scale, at an arbitrary combination of
#' covariate values, use the function \code{\link{ematrix.msm}}.}
#' \item{EmatricesSE}{The standard error matrices corresponding to
#' \code{Ematrices}.} \item{EmatricesL,EmatricesU}{Corresponding lower and
#' upper symmetric confidence limits, of width 0.95 unless specified otherwise
#' by the \code{cl} argument. }
#'
#' \item{minus2loglik}{Minus twice the maximised log-likelihood.}
#' \item{deriv}{Derivatives of the minus twice log-likelihood at its maximum.}
#'
#' \item{estimates}{Vector of untransformed maximum likelihood estimates
#' returned from \code{\link{optim}}. Transition intensities are on the log
#' scale and misclassification probabilities are given as log odds relative to
#' the probability of the true state.} \item{estimates.t}{Vector of transformed
#' maximum likelihood estimates with intensities and probabilities on their
#' natural scales.}
#'
#' \item{fixedpars}{Indices of \code{estimates} which were fixed during the
#' maximum likelihood estimation.} \item{center}{Indicator for whether the
#' estimation was performed with covariates centered on their means in the
#' data.} \item{covmat}{Covariance matrix corresponding to \code{estimates}.}
#' \item{ci}{Matrix of confidence intervals corresponding to
#' \code{estimates.t}}
#'
#' \item{opt}{Return value from the optimisation routine (such as
#' \code{\link{optim}} or \code{\link{nlm}}), giving information about the
#' results of the optimisation.} \item{foundse}{Logical value indicating
#' whether the Hessian was positive-definite at the supposed maximum of the
#' likelihood. If not, the covariance matrix of the parameters is unavailable.
#' In these cases the optimisation has probably not converged to a maximum. }
#' \item{data}{A list giving the data used for the model fit, for use in
#' post-processing. To extract it, use the methods
#' \code{\link{model.frame.msm}} or \code{\link{model.matrix.msm}}.
#'
#' The format of this element changed in version 1.4 of \pkg{msm}, so that it
#' now contains a \code{\link{model.frame}} object \code{mf} with all the
#' variables used in the model. The previous format (an ad-hoc list of vectors
#' and matrices) can be obtained with the function
#' \code{recreate.olddata(msmobject)}, where \code{msmobject} is the object
#' returned by \code{msm}. } \item{qmodel}{A list of objects representing the
#' transition matrix structure and options for likelihood calculation. See
#' \code{\link{qmodel.object}} for documentation of the components.}
#' \item{emodel}{A list of objects representing the misclassification model
#' structure, for models specified using the \code{ematrix} argument to
#' \code{\link{msm}}. See \code{\link{emodel.object}}.} \item{qcmodel}{A list
#' of objects representing the model for covariates on transition intensities.
#' See \code{\link{qcmodel.object}}.} \item{ecmodel}{A list of objects
#' representing the model for covariates on transition intensities. See
#' \code{\link{ecmodel.object}}.} \item{hmodel}{A list of objects representing
#' the hidden Markov model structure. See \code{\link{hmodel.object}}.}
#' \item{cmodel}{A list giving information about censored states. See
#' \code{\link{cmodel.object}}. } \item{pci}{Cut points for time-varying
#' intensities, as supplied to \code{\link{msm}}, but excluding any that are
#' outside the times observed in the data.} \item{paramdata}{A list giving
#' information about the parameters of the multi-state model. See
#' \code{\link{paramdata.object}}.} \item{cl}{Confidence interval width, as
#' supplied to \code{\link{msm}}.} \item{covariates}{Formula for covariates on
#' intensities, as supplied to \code{\link{msm}}.}
#' \item{misccovariates}{Formula for covariates on misclassification
#' probabilities, as supplied to \code{\link{msm}}.} \item{hcovariates}{Formula
#' for covariates on hidden Markov model outcomes, as supplied to
#' \code{\link{msm}}.} \item{initcovariates}{Formula for covariates on initial
#' state occupancy probabilities in hidden Markov models, as supplied to
#' \code{\link{msm}}.} \item{sojourn}{ A list as returned by
#' \code{\link{sojourn.msm}}, with components:
#'
#' \code{mean} = estimated mean sojourn times in the transient states, with
#' covariates fixed at their means (if center=TRUE) or at zero (if
#' center=FALSE).
#'
#' \code{se} = corresponding standard errors. }
NULL
#' Developer documentation: internal msm parameters object
#'
#' An object giving information about the parameters of the multi-state model.
#' Used internally during maximum likelihood estimation and arranging results.
#' Returned as the \code{paramdata} component of a fitted \code{\link{msm}}
#' model object.
#'
#' @name paramdata.object
#' @return \item{inits}{Vector of initial values for distinct parameters which
#' are being estimated. These have been transformed to the real line (e.g. by
#' log), and exclude parameters being fixed at their initial values, parameters
#' defined to be always fixed (e.g. binomial denominators) and parameters
#' constrained to equal previous ones.} \item{plabs}{Names of parameters in
#' \code{allinits}.} \item{allinits}{Vector of parameter values before
#' estimation, including those which are fixed or constrained to equal other
#' parameters, and transformed to the real line.} \item{hmmpars}{Indices of
#' \code{allinits} which represent baseline parameters of hidden Markov outcome
#' models (thus excluding covariate effects in HMMs and initial state occupancy
#' probabilities). } \item{fixed}{\code{TRUE} if all parameters are fixed,
#' \code{FALSE} otherwise.} \item{fixedpars}{Indices of parameters in
#' \code{allinits} which are fixed, either by definition or as requested by the
#' user in the \code{fixedpars} argument to \code{\link{msm}}. Excludes
#' parameters fixed by constraining to equal other parameters.}
#' \item{notfixed}{Indices of parameters which are not fixed by the definition
#' of \code{fixedpars}.} \item{optpars}{Indices of parameters in
#' \code{allinits} being estimated, thus those included in \code{inits}.}
#' \item{auxpars}{Indices of "auxiliary" parameters which are always fixed, for
#' example, binomial denominators (\code{\link{hmmBinom}}) and the \code{which}
#' parameter in \code{\link{hmmIdent}}.} \item{constr}{Vector of integers, of
#' length \code{npars}, indicating which sets of parameters are constrained to
#' be equal to each other. If two of these integers are equal the
#' corresponding parameters are equal. A negative element indicates that
#' parameter is defined to be minus some other parameter (this is used for
#' covariate effects on transition intensities).} \item{npars}{Total number of
#' parameters, equal to \code{length(allinits)}.} \item{nfix}{Number of fixed
#' parameters, equal to \code{length(fixedpars)}. } \item{nopt}{Number of
#' parameters being estimated, equal to \code{length(inits)} and
#' \code{length(optpars)}.} \item{ndup}{Number of parameters defined as
#' duplicates of previous parameters by equality constraints (currently
#' unused).} \item{ranges}{Matrix of defined ranges for each parameter on the
#' natural scale (e.g. 0 to infinity for rate parameters). } \item{opt}{Object
#' returned by the optimisation routine (such as \code{\link{optim}}).}
#' \item{foundse}{\code{TRUE} if standard errors are available after
#' optimisation. If \code{FALSE} the optimisation probably hasn't converged. }
#' \item{lik}{Minus twice the log likelihood at the parameter estimates.}
#' \item{deriv}{Derivatives of the minus twice log likelihood at the parameter
#' estimates, if available. } \item{information}{Corresponding expected
#' information matrix at the parameter estimates, if available.}
#' \item{params}{Vector of parameter values after maximum likelihood
#' estimation, corresponding to \code{allinits}, still on the real-line
#' transformed scale.} \item{covmat}{Covariance matrix corresponding to
#' \code{params}.} \item{ci}{Matrix of confidence intervals corresponding to
#' \code{params}, with nominal coverage (default 0.95) defined by the \code{cl}
#' argument of \code{\link{msm}}. } \item{estimates.t}{Vector of parameter
#' estimates, as \code{params} but with parameters on their natural scales.}
#' @seealso \code{\link{msm.object}}
NULL
#' Developer documentation: model for covariates on transition intensities
#'
#' A list representing the model for covariates on transition intensities
#'
#' @name qcmodel.object
#' @return \item{npars}{Number of covariate effect parameters. This is defined
#' as the number of covariates on intensities (with factors expanded as
#' contrasts) multiplied by the number of allowed transitions in the model.
#'
#' Note if \code{\link{msm}} was called with \code{covariates} set to a list of
#' different covariates for different intensities, then this will include
#' covariate effects that are implicitly defined as zero by this list. The
#' information in \code{\link[=paramdata.object]{paramdata}} objects can be
#' used to identify wich ones are fixed at zero.
#'
#' This also includes any \code{timeperiod} covariates in a time-inhomogeneous
#' model defined by the \code{pci} option to \code{\link{msm}}. }
#' \item{ndpars}{Number of distinct covariate effect parameters, as
#' \code{npars}, but after any equality constraints have been applied.}
#' \item{ncovs}{Number of covariates on intensities, with factors expanded as
#' contrasts.} \item{constr}{List of equality constraints on these covariate
#' effects, as supplied in the \code{constraint} argument to
#' \code{\link{msm}}.} \item{covlabels}{Names / labels of these covariates in
#' the model matrix (see \code{\link{model.matrix.msm}}).} \item{inits}{Initial
#' values for these covariate effects, as a vector formed from the
#' \code{covinits} list supplied to \code{\link{msm}}.} \item{covmeans}{Means
#' of these covariates in the data (excluding data not required to fit the
#' model, such as observations with missing data in other elements or subjects'
#' last observations). This includes means of 0/1 factor contrasts as well as
#' continuous covariates (for historic reasons, which may not be sensible).}
#' @seealso \code{\link{msm.object}}.
NULL
#' Developer documentation: transition model structure object
#'
#' A list giving information about the structure of states and allowed
#' transitions in a multi-state model, and options for likelihood calculation.
#' Used in internal computations, and returned in a fitted \code{\link{msm}}
#' model object.
#'
#' @name qmodel.object
#' @return \item{nstates}{Number of states} \item{iso}{Label for which basic
#' structure the model is isomorphic to in the list of structures for which
#' analytic formulae for the transition probabilities are implemented in the
#' source file \code{src/analyticp.c}. This list is given by the internal
#' object \code{msm:::.msm.graphs} which is defined and documented in the
#' source file \code{R/constants.R}.
#'
#' \code{iso} is 0 if the analytic P matrix is not implemented for this
#' structure, or if analytic P matrix calculations are disabled using
#' \code{use.analyticp=FALSE} in the call to \code{\link{msm}}. }
#' \item{perm}{Permutation required to convert the base isomorphism into the
#' structure of this model. A vector of integers whose \eqn{r}th element is the
#' state number in the base structure representing state \eqn{r} in the current
#' structure. } \item{qperm}{Inverse permutation: vector whose \eqn{r}th
#' element is the state number in the current structure representing the
#' \eqn{r}th state in the base structure.} \item{npars}{Number of allowed
#' instantaneous transitions, equal to \code{sum(imatrix)}.}
#' \item{imatrix}{Indicator matrix for allowed instantaneous transitions. This
#' has \eqn{(r,s)} entry 1 if the transition from \eqn{r} to \eqn{s} is
#' permitted in continuous time, and 0 otherwise. The diagonal entries are
#' arbitrarily set to 0.} \item{qmatrix}{Matrix of initial values for the
#' transition intensities, supplied as the \code{qmatrix} argument of
#' \code{\link{msm}}.} \item{inits}{Vector of these initial values, reading
#' across rows of \code{qmatrix} and excluding the diagonal and disallowed
#' transitions.} \item{constr}{Indicators for equality constraints on baseline
#' intensities, taken from the \code{qconstraint} argument to
#' \code{\link{msm}}, and mapped if necessary to the set (1,2,3,...).}
#' \item{ndpars}{Number of distinct allowed instantaneous transitions, after
#' applying equality constraints.} \item{expm}{Use \pkg{expm} package to
#' calculate matrix exponentials for likelihoods, as supplied to the
#' \code{use.expm} argument of \code{\link{msm}}. \code{TRUE} or
#' \code{FALSE}.}
#' @seealso \code{\link{msm.object}},\code{\link{emodel.object}},
#' \code{\link{hmodel.object}}.
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.