abr1 | abr1 Data |
accest | Estimate Classification Accuracy By Resampling Method |
binest | Binary Classification |
boot.err | Calculate .632 and .632+ Bootstrap Error Rate |
boxplot.frankvali | Boxplot Method for Class 'frankvali' |
boxplot.maccest | Boxplot Method for Class 'maccest' |
classifier | Wrapper Function for Classifiers |
cl.perf | Assess Classification Performances |
cor.util | Correlation Analysis Utilities |
data.visualisation | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
dat.sel | Generate Pairwise Data Set |
df.util | Summary Utilities |
feat.agg | Rank aggregation by Borda count algorithm |
feat.freq | Frequency and Stability of Feature Selection |
feat.mfs | Multiple Feature Selection |
feat.rank.re | Feature Ranking with Resampling Method |
frank.err | Feature Ranking and Validation on Feature Subset |
frankvali | Estimates Feature Ranking Error Rate with Resampling |
fs.anova | Feature Selection Using ANOVA |
fs.auc | Feature Selection Using Area under Receiver Operating Curve... |
fs.bw | Feature Selection Using Between-Group to Within-Group (BW)... |
fs.kruskal | Feature Selection Using Kruskal-Wallis Test |
fs.pca | Feature Selection by PCA |
fs.pls | Feature Selection Using PLS |
fs.relief | Feature Selection Using RELIEF Method |
fs.rf | Feature Selection Using Random Forests (RF) |
fs.rfe | Feature Selection Using SVM-RFE |
fs.snr | Feature Selection Using Signal-to-Noise Ratio (SNR) |
fs.welch | Feature Selection Using Welch Test |
fs.wilcox | Feature Selection Using Wilcoxon Test |
get.fs.len | Get Length of Feature Subset for Validation |
grpplot | Plot Matrix-Like Object by Group |
list.util | List Manipulation Utilities |
maccest | Estimation of Multiple Classification Accuracy |
mbinest | Binary Classification by Multiple Classifier |
mc.anova | Multiple Comparison by 'ANOVA' and Pairwise Comparison by... |
mc.fried | Multiple Comparison by 'Friedman Test' and Pairwise... |
mc.norm | Normality Test by Shapiro-Wilk Test |
mdsplot | Plot Classical Multidimensional Scaling |
mv.util | Missing Value Utilities |
osc | Orthogonal Signal Correction (OSC) |
osc_sjoblom | Orthogonal Signal Correction (OSC) Approach by Sjoblom et al. |
osc_wise | Orthogonal Signal Correction (OSC) Approach by Wise and... |
osc_wold | Orthogonal Signal Correction (OSC) Approach by Wold et al. |
panel.elli | Panel Function for Plotting Ellipse and outlier |
panel.smooth.line | Panel Function for Plotting Regression Line |
pcalda | Classification with PCADA |
pca.outlier | Outlier detection by PCA |
pcaplot | Plot Function for PCA with Grouped Values |
plot.accest | Plot Method for Class 'accest' |
plot.maccest | Plot Method for Class 'maccest' |
plot.pcalda | Plot Method for Class 'pcalda' |
plot.plsc | Plot Method for Class 'plsc' or 'plslda' |
plsc | Classification with PLSDA |
predict.osc | Predict Method for Class 'osc' |
predict.pcalda | Predict Method for Class 'pcalda' |
predict.plsc | Predict Method for Class 'plsc' or 'plslda' |
preproc | Pre-process Data Set |
pval.util | P-values Utilities |
save.tab | Save List of Data Frame or Matrix into CSV File |
stats.util | Statistical Summary Utilities for Two-Classes Data |
trainind | Generate Index of Training Samples |
tune.func | Functions for Tuning Appropriate Number of Components |
valipars | Generate Control Parameters for Resampling |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.