pca.outlier | R Documentation |
Outlier detection by the Mahalanobis distances of PC1 and PC2. Also plot PC1 and PC2 with its confidence ellipse.
pca.outlier(x, center = TRUE, scale=TRUE,conf.level = 0.975,...)
pca.outlier.1(x, center = TRUE, scale=TRUE, conf.level = 0.975,
group=NULL, main = "PCA", cex=0.7,...)
x |
A data frame or matrix. |
center |
A logical value indicating whether the variables should be shifted to be zero centred before PCA analysis takes place. |
scale |
A logical value indicating whether the variables should be scaled to have unit variance before PCA analysis takes place. |
conf.level |
The confidence level for controlling the cutoff of the Mahalanobis distances. |
group |
A string character or factor indicating group
information of row of |
main |
An overall title for PCA plot. |
cex |
A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default. |
... |
Further arguments for plotting |
A list with components:
plot |
plot object of class |
outlier |
Outliers detected. |
conf.level |
Confidence level used. |
mah.dist |
Mahalanobis distances of each data sample. |
cutoff |
Cutoff of Mahalanobis distances used for outlier detection. |
Examples of panel.elli
and panel.outl
give more general information about ellipses and outliers. If you
ONLY want to plot outliers based on PCA in a general way, for
example, outliers in different groups or in conditional panel, you can
write an wrapper function combining with pca.comp
,
panel.elli
and panel.outl
. It is quite
similiar to the implementation of pca_plot_wrap
.
Wanchang Lin
pcaplot
, grpplot
,
panel.outl
,panel.elli
,
pca_plot_wrap
data(iris)
## call lattice version
pca.outlier(iris[,1:4], adj=-0.5)
## plot group
pca.outlier(iris[,1:4], adj=-0.5,groups=iris[,5])
## more information about groups
pca.outlier(iris[,1:4],groups=iris[,5],adj = -0.5, xlim=c(-5, 5),
auto.key = list(x = .05, y = .9, corner = c(0, 0)),
par.settings = list(superpose.symbol=list(pch=rep(1:25))))
## call basic graphic version
pca.outlier.1(iris[,1:4])
## plot group
pca.outlier.1(iris[,1:4], group=iris[,5])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.