pcaplot | R Documentation |
Plot function for PCA with grouped values.
pcaplot(x, y, scale = TRUE, pcs = 1:2, ...)
pca.plot(x, y, scale=TRUE, abbrev = FALSE, ep.plot=FALSE,...)
pca.comp(x, scale=FALSE, pcs=1:2,...)
x |
A matrix or data frame to be plotted. |
y |
A factor or vector giving group information of columns of
|
scale |
A logical value indicating whether the data set |
pcs |
A vector of index of PCs to be plotted. |
ep.plot |
A logical value indicating whether the ellipse should be plotted. |
abbrev |
Whether the group labels are abbreviated on the plots.
If |
... |
Further arguments to |
pcaplot
returns an object of class "trellis"
.
pca.comp
returns a list with components:
scores |
PCA scores |
vars |
Proportion of variance |
varsn |
A vector of string indicating the percentage of variance. |
Number of columns of x
must be larger than 1. pcaplot
uses
lattice
to plot PCA while pca.plot
uses the basic graphics
to do so. pca.plot
plots PC1 and PC2 only.
Wanchang Lin
grpplot
, panel.elli.1
,
pca_plot_wrap
## examples of 'pcaplot'
data(iris)
pcaplot(iris[,1:4], iris[,5],pcs=c(2,1),ep=2)
## change confidence interval (see 'panel.elli.1')
pcaplot(iris[,1:4], iris[,5],pcs=c(1,2),ep=2, conf.level = 0.9)
pcaplot(iris[,1:4], iris[,5],pcs=c(2,1),ep=1,
auto.key=list(space="top", columns=3))
pcaplot(iris[,1:4], iris[,5],pcs=c(1,3,4))
tmp <- pcaplot(iris[,1:4], iris[,5],pcs=1:3,ep=2)
tmp
## change symbol's color, type and size
pcaplot(iris[,1:4], iris[,5],pcs=c(2,1),main="IRIS DATA", cex=1.2,
auto.key=list(space="right", col=c("black","blue","red"), cex=1.2),
par.settings = list(superpose.symbol = list(col=c("black","blue","red"),
pch=c(1:3))))
## compare pcaplot and pca.plot.
pcaplot(iris[,1:4], iris[,5],pcs=c(1,2),ep=2)
pca.plot(iris[,1:4], iris[,5], ep.plot = TRUE)
## an example of 'pca.comp'
pca.comp(iris[,1:4], scale = TRUE, pcs=1:3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.