| feat.rank.re | R Documentation | 
Feature selection with resampling method.
  feat.rank.re(x,y,method=,pars = valipars(),tr.idx=NULL,...)
x | 
 A matrix or data frame containing the explanatory variables.  | 
y | 
 A factor specifying the class for each observation.  | 
method | 
 Feature selection method to be used. For each method used in this 
function, the output must be a list including two components,   | 
pars | 
 A list of resampling scheme method such as Leave-one-out cross-validation, 
Cross-validation, Bootstrap and Randomised validation (holdout).
See   | 
tr.idx | 
 User defined index of training samples. Can be generated by   | 
... | 
 Additional parameters to   | 
A list with components:
method | 
 Feature selection method used.  | 
fs.rank | 
 A vector of final feature ranking list.  | 
fs.order | 
 A vector of final feature order from best to worst.  | 
rank.list | 
 Feature rank lists of all computation.  | 
order.list | 
 Feature order lists of all computation.  | 
pars | 
 Resampling parameters.  | 
tr.idx | 
 Index of training samples.  | 
all | 
 All results come from re-sampling.  | 
Wanchang Lin
valipars, feat.freq, frankvali
## prepare data set
data(abr1)
cls <- factor(abr1$fact$class)
dat <- abr1$pos
## dat <- abr1$pos[,110:1930]
## fill zeros with NAs
dat <- mv.zene(dat)
## missing values summary
mv <- mv.stats(dat, grp=cls) 
## mv    ## View the missing value pattern
## filter missing value variables
## dim(dat)
dat <- dat[,mv$mv.var < 0.15]
## dim(dat)
## fill NAs with mean
dat <- mv.fill(dat,method="mean")
## log transformation
dat <- preproc(dat, method="log10")
## select class "1" and "2" for feature ranking
ind <- which(cls==1 | cls==2)
x   <- dat[ind,,drop=FALSE] 
y   <- cls[ind, drop=TRUE]   
## feature selection
pars   <- valipars(sampling="boot",niter=2,nreps=5)
tr.idx <- trainind(y,pars=pars)
z      <- feat.rank.re(x,y,method="fs.auc",pars = pars)
names(z)
               
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.