Nothing
#' Find the Bayes Estimate of a Partition
#'
#' Find the (approximate) Bayes estimate of a partition based on MCMC samples
#' of the partition and a specified loss function.
#'
#' @param partitions Posterior samples of the partition, where each column
#' is one sample and the partition is represented as an \code{integer} vector of
#' arbitrary labels, as produced by the output of a call to
#' \code{\link{gibbs_sampler}}.
#' @param burn_in The number of samples to discard for burn in.
#' @param L_FNM Positive loss for a false non-match. Default is \code{1}.
#' @param L_FM1 Positive loss for a type 1 false match. Default is \code{1}.
#' @param L_FM2 Positive loss for a type 2 false match. Default is \code{2}.
#' @param L_A Positive loss for abstaining from making a decision for a record.
#' Default is \code{Inf}, i.e. decisions are made for all records.
#' @param max_cc_size The maximum allowable connected component size over which
#' the posterior expected loss is minimized. Default is \code{nrow(partitions)},
#' i.e. no approximation is used. When \code{is.infinite(L_A)}, we recommend
#' setting this argument to \code{50}, then increasing based on a computational
#' budget. When \code{!is.infinite(L_A)}, we recommend setting this argument to
#' \code{10-12}, then increasing based on a computational budget (although an
#' increase of \code{1} in this argument can in the worst case lead to a
#' doubling in computation time).
#' @param verbose A \code{logical} indicator of whether progress messages should
#' be print (default \code{TRUE}).
#'
#' @return
#' A vector, the same length of a column of \code{partitions} containing the
#' (approximate) Bayes estimate of the partition. If \code{!is.infinite(L_A)}
#' the output may be a partial estimate. A positive number \code{l} in index
#' \code{i} indicates that record \code{i} is in the same cluster as every other
#' record \code{j} with \code{l} in index \code{j}. A value of \code{-1} in
#' index \code{i} indicates that the Bayes estimate abstained from making a
#' decision for record \code{i}.
#' @references Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and Duplicate Detection. \emph{Journal of the
#' American Statistical Association}. [\doi{https://doi.org/10.1080/01621459.2021.2013242}][\href{https://arxiv.org/abs/2110.03839}{arXiv}]
#'
#' @export
#'
#' @examples
#' # Example with small no duplicate dataset
#' data(no_dup_data_small)
#'
#' # Create the comparison data
#' comparison_list <- create_comparison_data(no_dup_data_small$records,
#' types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
#' breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),
#' c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
#' file_sizes = no_dup_data_small$file_sizes,
#' duplicates = c(0, 0, 0))
#'
#' # Specify the prior
#' prior_list <- specify_prior(comparison_list, mus = NA, nus = NA, flat = 0,
#' alphas = rep(1, 7), dup_upper_bound = c(1, 1, 1),
#' dup_count_prior_family = NA, dup_count_prior_pars = NA,
#' n_prior_family = "uniform", n_prior_pars = NA)
#'
#' # Find initialization for the matching (this step is optional)
#' # The following line corresponds to only keeping pairs of records as
#' # potential matches in the initialization for which neither gname nor fname
#' # disagree at the highest level
#' pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
#' (comparison_list$comparisons[, "fname_DL_3"] != TRUE)
#' Z_init <- initialize_partition(comparison_list, pairs_to_keep, seed = 42)
#'
#' # Run the Gibbs sampler
#' results <- gibbs_sampler(comparison_list, prior_list, n_iter = 1000,
#' Z_init = Z_init, seed = 42)
#'
#' # Find the full Bayes estimate
#' \donttest{
#' full_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
#' L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = Inf, max_cc_size = 50)
#'
#' # Find the partial Bayes estimate
#' partial_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
#' L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = 0.1, max_cc_size = 12)
#' }
#'
#' # Example with small duplicate dataset
#' data(dup_data_small)
#'
#' # Create the comparison data
#' comparison_list <- create_comparison_data(dup_data_small$records,
#' types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
#' breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),
#' c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
#' file_sizes = dup_data_small$file_sizes,
#' duplicates = c(1, 1, 1))
#'
#' # Reduce the comparison data
#' # The following line corresponds to only keeping pairs of records for which
#' # neither gname nor fname disagree at the highest level
#' pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
#' (comparison_list$comparisons[, "fname_DL_3"] != TRUE)
#' reduced_comparison_list <- reduce_comparison_data(comparison_list,
#' pairs_to_keep, cc = 1)
#'
#' # Specify the prior
#' prior_list <- specify_prior(reduced_comparison_list, mus = NA, nus = NA,
#' flat = 0, alphas = rep(1, 7), dup_upper_bound = c(10, 10, 10),
#' dup_count_prior_family = c("Poisson", "Poisson", "Poisson"),
#' dup_count_prior_pars = list(c(1), c(1), c(1)), n_prior_family = "uniform",
#' n_prior_pars = NA)
#'
#' # Run the Gibbs sampler
#' results <- gibbs_sampler(reduced_comparison_list, prior_list, n_iter = 1000,
#' seed = 42)
#'
#' # Find the full Bayes estimate
#' \donttest{
#' full_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
#' L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = Inf, max_cc_size = 50)
#'
#' # Find the partial Bayes estimate
#' partial_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
#' L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = 0.1, max_cc_size = 12)
#' }
find_bayes_estimate <- function(partitions, burn_in, L_FNM = 1, L_FM1 = 1,
L_FM2 = 2, L_A = Inf,
max_cc_size = nrow(partitions),
verbose = TRUE){
# Input checks
if(!is.numeric(L_FNM)){
stop("'L_FNM' must be numeric")
}
if(L_FNM <= 0){
stop("'L_FNM' must be positive")
}
if(!is.numeric(L_FM1)){
stop("'L_FM1' must be numeric")
}
if(L_FM1 <= 0){
stop("'L_FM1' must be positive")
}
if(!is.numeric(L_FM2)){
stop("'L_FM2' must be numeric")
}
if(L_FM2 <= 0){
stop("'L_FM2' must be positive")
}
if(!is.numeric(L_A)){
stop("'L_A' must be numeric")
}
if(L_A <= 0){
stop("'L_A' must be positive")
}
if(!is.infinite(L_A) & max_cc_size > 15){
warning("Finding partial Bayes estimate may take a long time when
maximum connected component is size > 15")
}
if(is.infinite(L_A) & max_cc_size > 100){
warning("Finding full Bayes estimate may take a long time when maximum
connected component is size > 100")
}
n_iter <- ncol(partitions)
partitions <- as.matrix(partitions[, (burn_in + 1):n_iter])
r <- nrow(partitions)
TT <- n_iter - burn_in
thresh <- 0
thresh_inc <- 1 / TT
temp_psm <- mcclust::comp.psm(t(partitions))
psm <- temp_psm > thresh
g <- igraph::graph_from_adjacency_matrix(psm, mode = "undirected")
ccs <- igraph::components(g)
while(max(ccs$csize) > max_cc_size){
thresh <- thresh + thresh_inc
psm <- temp_psm > thresh
g <- igraph::graph_from_adjacency_matrix(psm, mode = "undirected")
ccs <- igraph::components(g)
}
if(verbose){
print(paste0("Finding Bayes estimate with a threshold of ", thresh,
" and a maximum connected component of size ",
max(ccs$csize)))
}
relabel_partition <- function(sample){
iterlabels <- unique(sample)
newlabs <- seq_len(length(iterlabels))
newlabs[match(sample, iterlabels)]
}
Z_hat <- rep(0, r)
for(cc in 1:ccs$no){
temp <- which(ccs$membership == cc)
if(ccs$csize[cc] == 1){
Z_hat[temp] <- max(Z_hat) + 1
}
else{
temp_part <- partitions[temp, ]
if(is.infinite(L_A)){
temp_loss <- get_posterior_loss_allcpp(TT, nrow(temp_part),
temp_part, L_FNM, L_FM1,
L_FM2)
Z_hat[temp] <-
relabel_partition(temp_part[, which.min(temp_loss)]) +
max(Z_hat)
}
else{
power <- as.matrix(expand.grid(replicate(ccs$csize[cc], c(1, 0),
simplify = FALSE)))
temp_loss <- get_posterior_loss_abstain_cpp(TT, nrow(temp_part),
temp_part, L_FNM,
L_FM1, L_FM2, L_A,
power)
min_loss <- which.min(temp_loss)
min_loss_draw <- ((min_loss - 1) %% TT) + 1
min_loss_power_row <- ((min_loss - 1) %/% TT) + 1
temp_Z <- temp_part[, min_loss_draw]
temp_decision <- which(power[min_loss_power_row, ] == 1)
temp_Z[temp_decision] <-
relabel_partition(temp_Z[temp_decision]) + max(Z_hat)
temp_Z[which(power[min_loss_power_row,] == 0)] <- -1
Z_hat[temp] <- temp_Z
}
}
}
return(Z_hat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.