View source: R/MultiLambdaCVfun.R
| predictIWLS | R Documentation |
Produces predictions from ridge fits for new data.
predictIWLS(IWLSfit, X1new = NULL, Sigmanew)
IWLSfit |
List, containing fits from either |
X1new |
Matrix. Dimension |
Sigmanew |
Matrix. Dimensions |
Predictions rely purely on the linear predictors, and do not require producing the parameter vector.
Numerical vector of linear predictor for the test samples.
IWLSridge (IWLSCoxridge) for fitting linear and
logistic ridge (Cox ridge). betasout for obtaining parameter
estimates.
Scoring to evaluate the predictions. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4
#Example below shows how to create the input argument Sigmanew (for simulated data) #Simulate Xbl1 <- matrix(rnorm(1000),nrow=10) Xbl2 <- matrix(rnorm(2000),nrow=10) Xbl1new <- matrix(rnorm(200),nrow=2) Xbl2new <- matrix(rnorm(400),nrow=2) #check whether dimensions are correct nrow(Xbl1)==nrow(Xbl1new) nrow(Xbl2)==nrow(Xbl2new) ncol(Xbl1)==nrow(Xbl2) ncol(Xbl1new)==ncol(Xbl2new) #create cross-product XXbl <- createXXblocks(list(Xbl1,Xbl2),list(Xbl1new,Xbl2new)) #suppose penalties for two data types equal 5,10, respectively Sigmanew <- SigmaFromBlocks(XXbl,c(5,10)) #check dimensions (should be nnew x n) dim(Sigmanew)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.