Nothing
#' @export
cv_rolling <- function(B, Z, Y, W, Ak, k, d, lambda1, ratios, t1, t2, eps,intercept=FALSE, cv, nfolds){
t1 <- t1[1]
t2 <- t2[1]
t3k <- cumsum(unlist(lapply(Ak,function(x){nrow(x)})))
t2k <- c(t2, c(t3k+t2)[-k])
t1k <- c(t1, c(t3k+t1)[-k])
t0k <- c(1, c(t3k+1)[-k])
rw_n <- length(c(1:(t2-t1)))
MSFE <- matrix(NA, nrow = rw_n, ncol = nrow(lambda1)*length(ratios))
pb <- txtProgressBar(1, rw_n, style=3)
for(rw_idx in 1:rw_n){
setTxtProgressBar(pb, rw_idx)
train_idx <- unlist(lapply(1:k,function(a){c(t0k[a]:(t1k[a]+(rw_idx-1)))}))
test_idx <- unlist(lapply(1:k,function(a){c(t1k[a]+rw_idx)}))
#cat("index: ", rw_idx, "\n")
#cat("test : ", train_idx, "\n")
#cat("train: ", test_idx, "\n\n")
beta <- wlasso(B, Z[,train_idx], Y[,train_idx], W, k, d, lambda1,eps,intercept)
# Calculate h-step MSFE for each penalty parameter
for (ii in 1:dim(beta)[3]) {
MSFE[rw_idx,ii] <- norm2(Y[,test_idx,drop=F]- beta[,-1,ii] %*% Z[,test_idx,drop=F] )^2
}
}
beta <- wlasso(B, Z, Y, W, k, d, lambda1,eps,intercept)
return(list(beta,MSFE))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.