Nothing
# expect_equal
# expect_error
# expect_match
# expect_true
# expect_false
###
test_that("require a data frame", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(seq(1, 60, 1)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
mx = matrix(nrow=5, ncol=5)
expect_error(glm.mp(Y ~ X, data=mx), "'data' must be a long-format data frame.")
})
###
test_that("require a dependent variable", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(seq(1, 60, 1)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
expect_error(glm.mp( ~ X, data=df), "'formula' must have a dependent variable on the left-hand side.")
})
###
test_that("require only one dependent variable", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(seq(1, 60, 1)),
X = factor(c(rep("a",30), rep("b",30))),
Y1 = factor(c(a,b)),
Y2 = factor(c(b,a))
)
expect_error(glm.mp(cbind(Y1,Y2) ~ X, data=df), "'formula' must only have one dependent variable.")
})
###
test_that("require a nominal dependent variable", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(seq(1, 60, 1)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b)),
Z = round(rnorm(60, mean=200, sd=40), digits=2)
)
expect_error(glm.mp(Z ~ X, data=df), "'formula' must have a nominal dependent variable of type 'factor'.")
})
###
test_that("disallow random factors", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(rep(1:30, times=2)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
expect_error(glm.mp(Y ~ X + (1|PId), data=df), "'formula' cannot have random factors.")
})
###
test_that("disallow family arguments", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(seq(1, 60, 1)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
expect_error(glm.mp(Y ~ X, data=df, family=binomial), "'...' cannot contain a 'family' argument.")
})
###
test_that("correctly match model deviances", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(seq(1, 60, 1)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
m1 = stats::glm(Y ~ X, data=df, family=binomial)
m2 = glm.mp(Y ~ X, data=df)
expect_equal(m1$deviance, m2$deviance)
})
###
test_that("correctly handle unbalanced data", {
set.seed(123)
a = sample(c("yes","no"), size=40, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=20, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(seq(1, 60, 1)),
X = factor(c(rep("a",40), rep("b",20))),
Y = factor(c(a,b))
)
m1 = stats::glm(Y ~ X, data=df, family=binomial)
m2 = glm.mp(Y ~ X, data=df)
expect_equal(m1$deviance, m2$deviance)
})
###
test_that("correctly handle missing rows", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(seq(1, 60, 1)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
r = sample.int(nrow(df), 10) # rows to remove
df = dplyr::filter(.data=df, !dplyr::row_number() %in% r) # remove rows
m1 = stats::glm(Y ~ X, data=df, family=binomial)
m2 = glm.mp(Y ~ X, data=df)
expect_equal(m1$deviance, m2$deviance)
})
###
test_that("correctly handle NA responses", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(seq(1, 60, 1)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
r = sample.int(nrow(df), 10) # rows to make NA responses
df[r,]$Y = NA
m1 = stats::glm(Y ~ X, data=df, family=binomial)
m2 = glm.mp(Y ~ X, data=df)
expect_equal(m1$deviance, m2$deviance)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.