estparmggd | R Documentation |
Estimation of the mean vector, dispersion matrix and shape parameter of a multivariate generalized Gaussian distribution (MGGD).
estparmggd(x, eps = 1e-6, display = FALSE, plot = display)
x |
numeric matrix or data frame. |
eps |
numeric. Precision for the estimation of the beta parameter. |
display |
logical. When |
plot |
logical. When |
The \mu
parameter is the mean vector of x
.
The dispersion matrix \Sigma
and shape parameter \beta
are computed
using the method presented in Pascal et al., using an iterative algorithm.
The precision for the estimation of beta
is given by the eps
parameter.
A list of 3 elements:
mu
the mean vector.
Sigma
: symmetric positive-definite matrix. The dispersion matrix.
beta
non-negative numeric value. The shape parameter.
with two attributes attr(, "epsilon")
(precision of the result) and attr(, "k")
(number of iterations).
Pierre Santagostini, Nizar Bouhlel
F. Pascal, L. Bombrun, J.Y. Tourneret, Y. Berthoumieu. Parameter Estimation For Multivariate Generalized Gaussian Distribution. IEEE Trans. Signal Processing, vol. 61 no. 23, p. 5960-5971, Dec. 2013. \Sexpr[results=rd]{tools:::Rd_expr_doi("DOI:10.1109/TSP.2013.2282909")}
dmggd
: probability density of a MGGD.
rmggd
: random generation from a MGGD.
mu <- c(0, 1, 4)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
beta <- 0.74
x <- rmggd(100, mu, Sigma, beta)
# Estimation of the parameters
estparmggd(x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.