kldstudent: Kullback-Leibler Divergence between Centered Multivariate t...

View source: R/kldstudent.R

kldstudentR Documentation

Kullback-Leibler Divergence between Centered Multivariate t Distributions

Description

Computes the Kullback-Leibler divergence between two random vectors distributed according to multivariate t distributions (MTD) with zero location vector.

Usage

kldstudent(nu1, Sigma1, nu2, Sigma2, eps = 1e-06)

Arguments

nu1

numeric. The degrees of freedom of the first distribution.

Sigma1

symmetric, positive-definite matrix. The scatter matrix of the first distribution.

nu2

numeric. The degrees of freedom of the second distribution.

Sigma2

symmetric, positive-definite matrix. The scatter matrix of the second distribution.

eps

numeric. Precision for the computation of the partial derivative of the Lauricella D-hypergeometric function (see Details). Default: 1e-06.

Details

Given X_1, a random vector of \mathbb{R}^p distributed according to the centered MTD with parameters (\nu_1, 0, \Sigma_1) and X_2, a random vector of \mathbb{R}^p distributed according to the MCD with parameters (\nu_2, 0, \Sigma_2).

Let \lambda_1, \dots, \lambda_p the eigenvalues of the square matrix \Sigma_1 \Sigma_2^{-1} sorted in increasing order:

\lambda_1 < \dots < \lambda_{p-1} < \lambda_p

The Kullback-Leibler divergence of X_1 from X_2 is given by:

\displaystyle{ D_{KL}(\mathbf{X}_1\|\mathbf{X}_2) = \ln\left(\frac{\Gamma\left(\frac{\nu_1+p}{2}\right) \Gamma\left(\frac{\nu_2}{2}\right) \nu_2^{\frac{p}{2}}}{\Gamma\left(\frac{\nu_2+p}{2}\right) \Gamma\left(\frac{\nu_1}{2}\right) \nu_1^{\frac{p}{2}}} \right) + \frac{\nu_2-\nu_1}{2} \left[\psi\left(\frac{\nu_1+p}{2} \right) - \psi\left(\frac{\nu_1}{2}\right)\right] - \frac{1}{2} \sum_{i=1}^p{\ln\lambda_i} - \frac{\nu_2+p}{2} \times D }

where \psi is the digamma function (see Special) and D is given by:

  • If \displaystyle{\frac{\nu_1}{\nu_2}\lambda_1 > 1},

    \displaystyle{ D = \prod_{i=1}^p{\left(\frac{\nu_2}{\nu_1}\frac{1}{\lambda_i}\right)^\frac{1}{2}} \frac{\partial}{\partial{a}}{ \bigg\{ F_D^{(p)}\bigg( \frac{\nu_1+p}{2}, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_p; a + \frac{\nu_1+p}{2}; 1 - \frac{\nu_2}{\nu_1}\frac{1}{\lambda_1}, \dots, 1 - \frac{\nu_2}{\nu_1}\frac{1}{\lambda_p} \bigg) \bigg\} } \bigg|_{a=0} }

  • If \displaystyle{\frac{\nu_1}{\nu_2}\lambda_p < 1},

    \displaystyle{ D = \frac{\partial}{\partial{a}}{ \bigg\{ F_D^{(p)}\bigg( a, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_p; a + \frac{\nu_1+p}{2}; 1 - \frac{\nu_1}{\nu_2}\lambda_1, \dots, 1 - \frac{\nu_1}{\nu_2}\lambda_p \bigg) \bigg\} } \bigg|_{a=0} }

  • If \displaystyle{\frac{\nu_1}{\nu_2}\lambda_1 < 1 < \frac{\nu1}{\nu_2}\lambda_p},

    \begin{array}{lll} D & = & \displaystyle{ -\ln\left(\frac{\nu_1}{\nu_2}\lambda_p\right) } + \\ && \displaystyle{ \frac{\partial}{\partial{a}}{ \bigg\{ F_D^{(p)}\bigg( a, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}, a + \frac{\nu_1}{2}}_p; a + \frac{\nu_1+p}{2}; 1 - \frac{\lambda_1}{\lambda_p}, \dots, 1 - \frac{\lambda_{p-1}}{\lambda_p}, 1 - \frac{\nu_2}{\nu_1}\frac{1}{\lambda_p} \bigg) \bigg\} } \bigg|_{a=0} } \end{array}

F_D^{(p)} is the Lauricella D-hypergeometric function defined for p variables:

\displaystyle{ F_D^{(p)}\left(a; b_1, \dots, b_p; g; x_1, \dots, x_p\right) = \sum\limits_{m_1 \geq 0} \dots \sum\limits_{m_p \geq 0}{ \frac{ (a)_{m_1+\dots+m_p}(b_1)_{m_1} \dots (b_p)_{m_p} }{ (g)_{m_1+\dots+m_p} } \frac{x_1^{m_1}}{m_1!} \dots \frac{x_p^{m_p}}{m_p!} } }

Value

A numeric value: the Kullback-Leibler divergence between the two distributions, with two attributes attr(, "epsilon") (precision of the partial derivative of the Lauricella D-hypergeometric function,see Details) and attr(, "k") (number of iterations).

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Multivariate t-Distributions. IEEE Signal Processing Letters, vol. 30, pp. 1672-1676, October 2023. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1109/LSP.2023.3324594")}

Examples

nu1 <- 2
Sigma1 <- matrix(c(2, 1.2, 0.4, 1.2, 2, 0.6, 0.4, 0.6, 2), nrow = 3)
nu2 <- 4
Sigma2 <- matrix(c(1, 0.3, 0.1, 0.3, 1, 0.4, 0.1, 0.4, 1), nrow = 3)

kldstudent(nu1, Sigma1, nu2, Sigma2)
kldstudent(nu2, Sigma2, nu1, Sigma1)


multvardiv documentation built on April 3, 2025, 6:08 p.m.