lauricella | R Documentation |
D
-Hypergeometric FunctionComputes the Lauricella D
-hypergeometric function.
lauricella(a, b, g, x, eps = 1e-06)
a |
numeric. |
b |
numeric vector. |
g |
numeric. |
x |
numeric vector. |
eps |
numeric. Precision for the nested sums (default 1e-06). |
If n
is the length of the b
and x
vectors,
the Lauricella D
-hypergeometric function is given by:
\displaystyle{F_D^{(n)}\left(a, b_1, ..., b_n, g; x_1, ..., x_n\right) = \sum_{m_1 \geq 0} ... \sum_{m_n \geq 0}{ \frac{ (a)_{m_1+...+m_n}(b_1)_{m_1} ... (b_n)_{m_n} }{ (g)_{m_1+...+m_n} } \frac{x_1^{m_1}}{m_1!} ... \frac{x_n^{m_n}}{m_n!} } }
where (x)_p
is the Pochhammer symbol (see pochhammer
).
If |x_i| < 1, i = 1, \dots, n
, this sum converges.
Otherwise there is an error.
The eps
argument gives the required precision for its computation.
It is the attr(, "epsilon")
attribute of the returned value.
A numeric value: the value of the Lauricella function,
with two attributes attr(, "epsilon")
(precision of the result) and attr(, "k")
(number of iterations).
Pierre Santagostini, Nizar Bouhlel
N. Bouhlel, A. Dziri, Kullback-Leibler Divergence Between Multivariate Generalized Gaussian Distributions. IEEE Signal Processing Letters, vol. 26 no. 7, July 2019. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1109/LSP.2019.2915000")}
N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Multivariate t-Distributions. IEEE Signal Processing Letters, vol. 30, pp. 1672-1676, October 2023. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1109/LSP.2023.3324594")}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.