knitr::opts_chunk$set( collapse = TRUE, comment = "#", fig.width=7, fig.height=5 ) library(knitr)
library(mvMAPIT) library(GGally) library(tidyr) library(dplyr)
In Stamp et al. (2023)[^4] we discuss the meta analysis of the pariwise comparison $P$-values that mvMAPIT gives. We provide three methods to compute a per-variant combined $P$-value:
The Fisher's method requires independent $P$-values. The other two tests handle arbitrary covariances between the $P$-values. Here we show how these three methods compare empirically when applied to the same $P$-values.
Draw random uniform $P$-values from [0, 0.05].
n_variants <- 10000 n_combine <- 3 pvalues <- tidyr::tibble( id = rep(as.character(c(1:n_variants)), each = n_combine), trait = rep(as.character(c(1:n_combine)), n_variants), p = runif(n_variants * n_combine, min = 0, max = 1) )
Use the provided methods to compute the meta analysis $P$-values.
cauchy <- cauchy_combined(pvalues) %>% rename(p_cauchy = p) %>% select(-trait) fisher <- fishers_combined(pvalues) %>% rename(p_fisher = p) %>% select(-trait) harmonic <- harmonic_combined(pvalues) %>% rename(p_harmonic = p) %>% select(-trait) min_max <- pvalues %>% group_by(id) %>% summarise(p_min = min(p), p_max = max(p)) combined_wide <- fisher %>% left_join(harmonic) %>% left_join(cauchy) %>% left_join(min_max) %>% select(-id)
The figure shows the data distribution on the diagonal and paired 2D historgam plots for all combinations of $P$-values. The brighter yellows correspond to higher counts, the green is in the middle of the scale, and the darker blues correspond to the low values of the histogram.
my_bin <- function(data, mapping) { ggplot(data = data, mapping = mapping) + geom_bin2d() + scale_fill_continuous(type = "viridis") } ggpairs(combined_wide, columns = 1:5, lower = list(continuous = my_bin)) + theme_bw() + theme(axis.text.x = element_text(angle=90, hjust=1))
[^1]: Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh). ISBN 0-05-002170-2. [^2]: Wilson, D.J., 2019. The harmonic mean p-value for combining dependent tests. Proceedings of the National Academy of Sciences, 116(4), pp.1195-1200. https://doi.org/10.1073/pnas.1814092116 [^3]: Liu, Y. and Xie, J., 2020. Cauchy combination test: a powerful test with analytic p-value calculation under arbitrary dependency structures. Journal of the American Statistical Association, 115(529), pp.393-402. https://doi.org/10.1080/01621459.2018.1554485 [^4]: J. Stamp, A. DenAdel, D. Weinreich, L. Crawford (2023). Leveraging the Genetic Correlation between Traits Improves the Detection of Epistasis in Genome-wide Association Studies. G3 Genes|Genomes|Genetics, 13(8), jkad118; doi: https://doi.org/10.1093/g3journal/jkad118
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.