Plot of Auto-correlation Funcion

Description

This function computes the autocorrelation function estimates for a selected parameter.

Usage

1
acfplot(object, parm = NULL)

Arguments

object

an object of class mvdareg, i.e., plsFit.

parm

a chosen predictor variable; if NULL a random predictor variable is chosen

Details

This function computes the autocorrelation function estimates for a selected parameter, via acf, and generates a graph that allows the analyst to assess the need for an autocorrelation adjustment in the smc.

Author(s)

Nelson Lee Afanador (nelson.afanador@mvdalab.com)

References

This function is built using the acf function in the stats R package.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer-Verlag.

See Also

smc, smc.acfTest

Examples

1
2
3
4
5
6
data(Penta)
## Number of bootstraps set to 500 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1], 
               ncomp = 2, validation = "oob", boots = 500)
acfplot(mod1, parm = NULL)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.