Nothing
likel.cov <- function(x, ina, a = 0.05) {
## x is the data set
## ina is a numeric vector indicating the groups of the data set
## a is the level of significance, set to 0.05 by default
ina <- as.numeric(ina)
p <- dim(x)[2] ## dimension of the data set
n <- dim(x)[1] ## total sample size
k <- max(ina) ## number of groups
nu <- tabulate(ina) ## the sample size of each group
t1 <- rep( (nu - 1)/nu, each = p^2 )
t2 <- rep(nu - 1, each = p^2 )
s <- array( dim = c(p, p, k) )
## the next 3 lines create the pooled covariance matrix
## and calculate the covariance matrix of each group
for (i in 1:k) s[, , i] <- Rfast::cova( x[ina == i, ] )
mat <- t1 * s
mat1 <- t2 * s
Sp <- colSums( aperm(mat1) ) / n
deta <- apply(mat, 3, det)
pame <- det(Sp) / deta
test <- sum(nu * log(pame)) ## test statistic
dof <- 0.5 * p * (p + 1) * (k - 1) ## degrees of freedom of chi-square
pvalue <- pchisq(test, dof, lower.tail = FALSE) ## p-value of test statistic
crit <- qchisq(1 - a, dof) ## critical value of chi-square distribution
res <- c(test, pvalue, dof, crit)
names(res) <- c('test', 'p-value', 'df', 'critical')
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.