# Mvt: The Multivariate t Distribution In mvtnorm: Multivariate Normal and t Distributions

 Mvt R Documentation

## The Multivariate t Distribution

### Description

These functions provide information about the multivariate t distribution with non-centrality parameter (or mode) delta, scale matrix sigma and degrees of freedom df. dmvt gives the density and rmvt generates random deviates.

### Usage

rmvt(n, sigma = diag(2), df = 1, delta = rep(0, nrow(sigma)),
type = c("shifted", "Kshirsagar"), ...)
dmvt(x, delta = rep(0, p), sigma = diag(p), df = 1, log = TRUE,
type = "shifted", checkSymmetry = TRUE)


### Arguments

 x vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile. n number of observations. delta the vector of noncentrality parameters of length n, for type = "shifted" delta specifies the mode. sigma scale matrix, defaults to diag(ncol(x)). df degrees of freedom. df = 0 or df = Inf corresponds to the multivariate normal distribution. log logical indicating whether densities d are given as \log(d). type type of the noncentral multivariate t distribution. type = "Kshirsagar" corresponds to formula (1.4) in Genz and Bretz (2009) (see also Chapter 5.1 in Kotz and Nadarajah (2004)). This is the noncentral t-distribution needed for calculating the power of multiple contrast tests under a normality assumption. type = "shifted" corresponds to the formula right before formula (1.4) in Genz and Bretz (2009) (see also formula (1.1) in Kotz and Nadarajah (2004)). It is a location shifted version of the central t-distribution. This noncentral multivariate t distribution appears for example as the Bayesian posterior distribution for the regression coefficients in a linear regression. In the central case both types coincide. Note that the defaults differ from the default in pmvt() (for reasons of backward compatibility). checkSymmetry logical; if FALSE, skip checking whether the covariance matrix is symmetric or not. This will speed up the computation but may cause unexpected outputs when ill-behaved sigma is provided. The default value is TRUE. ... additional arguments to rmvnorm(), for example method.

### Details

If \bm{X} denotes a random vector following a t distribution with location vector \bm{0} and scale matrix \Sigma (written X\sim t_\nu(\bm{0},\Sigma)), the scale matrix (the argument sigma) is not equal to the covariance matrix Cov(\bm{X}) of \bm{X}. If the degrees of freedom \nu (the argument df) is larger than 2, then Cov(\bm{X})=\Sigma\nu/(\nu-2). Furthermore, in this case the correlation matrix Cor(\bm{X}) equals the correlation matrix corresponding to the scale matrix \Sigma (which can be computed with cov2cor()). Note that the scale matrix is sometimes referred to as “dispersion matrix”; see McNeil, Frey, Embrechts (2005, p. 74).

For type = "shifted" the density

c(1+(x-\delta)'S^{-1}(x-\delta)/\nu)^{-(\nu+m)/2}

is implemented, where

c = \Gamma((\nu+m)/2)/((\pi \nu)^{m/2}\Gamma(\nu/2)|S|^{1/2}),

S is a positive definite symmetric matrix (the matrix sigma above), \delta is the non-centrality vector and \nu are the degrees of freedom.

df=0 historically leads to the multivariate normal distribution. From a mathematical point of view, rather df=Inf corresponds to the multivariate normal distribution. This is (now) also allowed for rmvt() and dmvt().

Note that dmvt() has default log = TRUE, whereas dmvnorm() has default log = FALSE.

### References

McNeil, A. J., Frey, R., and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press.

pmvt() and qmvt()

### Examples

## basic evaluation
dmvt(x = c(0,0), sigma = diag(2))

## check behavior for df=0 and df=Inf
x <- c(1.23, 4.56)
mu <- 1:2
Sigma <- diag(2)
x0 <- dmvt(x, delta = mu, sigma = Sigma, df = 0) # default log = TRUE!
x8 <- dmvt(x, delta = mu, sigma = Sigma, df = Inf) # default log = TRUE!
xn <- dmvnorm(x, mean = mu, sigma = Sigma, log = TRUE)
stopifnot(identical(x0, x8), identical(x0, xn))

## X ~ t_3(0, diag(2))
x <- rmvt(100, sigma = diag(2), df = 3) # t_3(0, diag(2)) sample
plot(x)

## X ~ t_3(mu, Sigma)
n <- 1000
mu <- 1:2
Sigma <- matrix(c(4, 2, 2, 3), ncol=2)
set.seed(271)
x <- rep(mu, each=n) + rmvt(n, sigma=Sigma, df=3)
plot(x)

## Note that the call rmvt(n, mean=mu, sigma=Sigma, df=3) does *not*
## give a valid sample from t_3(mu, Sigma)! [and thus throws an error]
try(rmvt(n, mean=mu, sigma=Sigma, df=3))

## df=Inf correctly samples from a multivariate normal distribution
set.seed(271)
x <- rep(mu, each=n) + rmvt(n, sigma=Sigma, df=Inf)
set.seed(271)
x. <- rmvnorm(n, mean=mu, sigma=Sigma)
stopifnot(identical(x, x.))


mvtnorm documentation built on May 29, 2024, 12:29 p.m.