lpmvnorm | R Documentation |
Computes the log-likelihood (contributions) of multiple exact or interval-censored observations (or a mix thereof) from multivariate normal distributions and evaluates corresponding score functions.
lpmvnorm(lower, upper, mean = 0, center = NULL, chol, invchol, logLik = TRUE,
M = NULL, w = NULL, seed = NULL, tol = .Machine$double.eps, fast = FALSE)
slpmvnorm(lower, upper, mean = 0, center = NULL, chol, invchol, logLik = TRUE,
M = NULL, w = NULL, seed = NULL, tol = .Machine$double.eps, fast = FALSE)
ldmvnorm(obs, mean = 0, chol, invchol, logLik = TRUE)
sldmvnorm(obs, mean = 0, chol, invchol, logLik = TRUE)
ldpmvnorm(obs, lower, upper, mean = 0, chol, invchol, logLik = TRUE, ...)
sldpmvnorm(obs, lower, upper, mean = 0, chol, invchol, logLik = TRUE, ...)
lower |
matrix of lower limits (one column for each observation, |
upper |
matrix of upper limits (one column for each observation, |
obs |
matrix of exact observations (one column for each observation, |
mean |
matrix of means (one column for each observation, length is
recycled to length of |
center |
matrix of negative rescaled means (one column for each observation, length is
recycled to length of |
chol |
Cholesky factors of covariance matrices as
|
invchol |
Cholesky factors of precision matrices as
|
logLik |
logical, if |
M |
number of iterations, early stopping based on estimated errors is NOT implemented. |
w |
an optional matrix of weights with |
seed |
an object specifying if and how the random number generator
should be initialized, see |
tol |
tolerance limit, values smaller than |
fast |
logical, if |
... |
additional arguments to |
Evaluates the multivariate normal log-likelihood defined by means
and
chol
over boxes defined by lower
and upper
or for
exact observations obs
.
Monte-Carlo (Genz, 1992, the default) and quasi-Monte-Carlo (Genz & Bretz, 2002)
integration is implemented, the latter with weights obtained, for example,
from packages qrng or randtoolbox. It is the responsibility of
the user to ensure a meaningful lattice is used. In case of doubt, use
plain Monte-Carlo (w = NULL
) or pmvnorm
.
slpmvnorm
computes both the individual log-likelihood contributions
and the corresponding score matrix (of dimension J \times (J + 1) / 2 \times N
) if
chol
contains diagonal elements. Otherwise, the dimension is J
\times (J - 1) / 2 \times N
. The scores for exact or mixed exact-interval
observations are computed by sldmvnorm
and sldpmvnorm
,
respectively.
More details can be found in the lmvnorm_src
package vignette.
The log-likelihood (logLik = TRUE
) or the individual contributions to the log-likelihood.
slpmvnorm
, sldmvnorm
, and sldpmvnorm
return the score
matrices and, optionally (logLik = TRUE
), the individual log-likelihood contributions
as well as scores for obs
, lower
, upper
, and
mean
.
Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1, 141–150.
Genz, A. and Bretz, F. (2002), Methods for the computation of multivariate t-probabilities. Journal of Computational and Graphical Statistics, 11, 950–971.
dmvnorm
, vignette("lmvnorm_src", package = "mvtnorm")
### five observations
N <- 5L
### dimension
J <- 4L
### lower and upper bounds, ie interval-censoring
lwr <- matrix(-runif(N * J), nrow = J)
upr <- matrix(runif(N * J), nrow = J)
### Cholesky factor
(C <- ltMatrices(runif(J * (J + 1) / 2), diag = TRUE))
### corresponding covariance matrix
(S <- as.array(Tcrossprod(C))[,,1])
### plain Monte-Carlo (Genz, 1992)
w <- NULL
M <- 25000
### quasi-Monte-Carlo (Genz & Bretz, 2002, but with different weights)
if (require("qrng")) w <- t(ghalton(M * N, J - 1))
### log-likelihood
lpmvnorm(lower = lwr, upper = upr, chol = C, w = w, M = M)
### compare with pmvnorm
exp(lpmvnorm(lower = lwr, upper = upr, chol = C, logLik = FALSE, w = w, M = M))
sapply(1:N, function(i) pmvnorm(lower = lwr[,i], upper = upr[,i], sigma = S))
### log-lik contributions and score matrix
slpmvnorm(lower = lwr, upper = upr, chol = C, w = w, M = M, logLik = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.