knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
In case you are NOT using one of the predefined microclimatic loggers listed in r names(myClim::mc_data_formats)
, you can create a user-defined myClim class using mc_data_formats. By doing this, you teach myClim how to parse your files into a myClim object.
Example files are available on GitHub.
============================================================
HOBO MX2301A bluetooth-enabled series
collected using the HOBOconnect software
# Load the 'myClim' library library(myClim) # Create a list to define a custom data format for 'myHOBO' user_data_formats <- list(myHOBO=new("mc_DataFormat")) # Set various properties for the 'myHOBO' data format user_data_formats$myHOBO@skip <- 1 # Skip the first row user_data_formats$myHOBO@separator <- "," # Define the separator as a comma user_data_formats$myHOBO@date_column <- 2 # Specify the column containing dates user_data_formats$myHOBO@date_format <- "%m/%d/%Y %H:%M:%S" # Define the date format user_data_formats$myHOBO@tz_offset <- 2 * 60 # Set the time zone offset in minutes user_data_formats$myHOBO@columns[[mc_const_SENSOR_T_C]] <- 3 # Map temperature to column 3 user_data_formats$myHOBO@columns[[mc_const_SENSOR_RH]] <- 4 # Map humidity to column 4 # Read data from a CSV file using the 'myHOBO' format, without cleaning my_data <- mc_read_files("./21498648.csv", "myHOBO", clean=FALSE, user_data_formats=user_data_formats) # Clean data in myClim object my_data_clean<-mc_prep_clean(my_data) # Plot the cleaned data with a scale coefficient of 0.1 mc_plot_line(my_data_clean,scale_coeff = 0.1)
============================================================
ElectricBlue EnvLogger TH2.5
collected using the EnvLogger Viewer App
# Load the 'myClim' library library(myClim) # Create a list to define a custom data format for 'my_EnvLogger' user_data_formats <- list(my_EnvLogger=new("mc_DataFormat")) # Set properties for the data format user_data_formats$my_EnvLogger@skip <- 23 # Skip the first 23 rows user_data_formats$my_EnvLogger@separator <- "," # Define the separator as a comma user_data_formats$my_EnvLogger@date_column <- 1 # Specify the column containing dates user_data_formats$my_EnvLogger@date_format <- "%Y-%m-%d %H:%M:%S" # Define the date format user_data_formats$my_EnvLogger@tz_offset <- 0 # Set the time zone offset to 0 (UTC) user_data_formats$my_EnvLogger@columns[[mc_const_SENSOR_T_C]] <- 2 # Map temperature to column 2 user_data_formats$my_EnvLogger@columns[[mc_const_SENSOR_RH]] <- 3 # Map humidity to column 3 # Read data from a CSV file using the 'my_EnvLogger' format, without cleaning my_data <- mc_read_files("./envloggerexample.csv", "my_EnvLogger", clean=FALSE, user_data_formats=user_data_formats) # Clean data in myClim object my_data_clean<-mc_prep_clean(my_data) # Plot the cleaned data with a scale coefficient of 0.1 mc_plot_line(my_data_clean,scale_coeff = 0.4)
===============================================================
artificial example
logger with soil moisture sensor and 3 temperature sensors
# Define a vector of file names files <- c("TMS94184102.csv", "TMS94184102_CET.csv") # Create a list to define a custom data format for 'my_logger' user_data_formats <- list(my_logger=new("mc_DataFormat")) user_data_formats$my_logger@date_column <- 2 # Specify the column containing dates user_data_formats$my_logger@tz_offset <- 0 # Set the time zone offset to 0 (UTC) user_data_formats$my_logger@columns[[mc_const_SENSOR_T_C]] <- c(3, 4, 5) # Map multiple temperature columns user_data_formats$my_logger@columns[[mc_const_SENSOR_real]] <- 6 # Map real sensor data to column 6 # Read data from the specified files using the 'my_logger' format, with data cleaning, silently (no console output) my_data <- mc_read_files(files, "my_logger", silent=TRUE, user_data_formats=user_data_formats) # Plot the data with a scale coefficient of 0.01 mc_plot_line(my_data,scale_coeff = 0.01)
===============================================================
Rename sensors if necessary
# Existing names levels(factor(mc_info(my_data)[["sensor_name"]])) # Define the new names my_data <- mc_prep_meta_sensor(my_data, list(real = "soil moisture", T_C1 = "soil T", T_C2 = "ground T", T_C3 = "air T"), param_name="name") # Check the new names levels(factor(mc_info(my_data)[["sensor_name"]])) # Plot the data with a scale coefficient of 0.01 p <- mc_plot_line(my_data,scale_coeff = 0.01) # Modify default colors. p <- p+ggplot2::scale_color_manual(values=c("hotpink", "pink", "darkblue", "green"), name=NULL) plot(p)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.