rRecovery | R Documentation |
The rRecovery
function returns a verification of the quality of the
recovery of the initial correlation or covariance matrix by the factor
solution.
rRecovery(R, loadings, diagCommunalities = FALSE)
R |
numeric: initial correlation or covariance matrix |
loadings |
numeric: loadings from a factor analysis solution |
diagCommunalities |
logical: if |
R |
numeric: initial correlation or covariance matrix |
recoveredR |
numeric: recovered estimated correlation or covariance matrix |
difference |
numeric: difference between initial and recovered estimated correlation or covariance matrix |
cor |
numeric:
Pearson correlation between initial and recovered estimated correlation or
covariance matrix. Computations depend on the logical value of the
|
Gilles Raiche
Centre sur les Applications des Modeles de
Reponses aux Items (CAMRI)
Universite du Quebec a Montreal
raiche.gilles@uqam.ca
componentAxis
, iterativePrincipalAxis
,
principalAxis
# ....................................................... # Example from Kim and Mueller (1978, p. 10) # Population: upper diagonal # Simulated sample: lower diagnonal R <- matrix(c( 1.000, .6008, .4984, .1920, .1959, .3466, .5600, 1.000, .4749, .2196, .1912, .2979, .4800, .4200, 1.000, .2079, .2010, .2445, .2240, .1960, .1680, 1.000, .4334, .3197, .1920, .1680, .1440, .4200, 1.000, .4207, .1600, .1400, .1200, .3500, .3000, 1.000), nrow=6, byrow=TRUE) # Replace upper diagonal with lower diagonal RU <- diagReplace(R, upper=TRUE) nFactors <- 2 loadings <- principalAxis(RU, nFactors=nFactors, communalities="component")$loadings rComponent <- rRecovery(RU,loadings, diagCommunalities=FALSE)$cor loadings <- principalAxis(RU, nFactors=nFactors, communalities="maxr")$loadings rMaxr <- rRecovery(RU,loadings, diagCommunalities=FALSE)$cor loadings <- principalAxis(RU, nFactors=nFactors, communalities="multiple")$loadings rMultiple <- rRecovery(RU,loadings, diagCommunalities=FALSE)$cor round(c(rComponent = rComponent, rmaxr = rMaxr, rMultiple = rMultiple), 3) # .......................................................
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.