Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/ncpen_cpp_wrap.R
The function returns controlled samples and tuning parameters for ncpen by eliminating unnecessary errors.
1 2 3 4 5 6 | control.ncpen(y.vec, x.mat, family = c("gaussian", "binomial", "poisson",
"multinomial", "cox"), penalty = c("scad", "mcp", "tlp", "lasso",
"classo", "ridge", "sridge", "mbridge", "mlog"), x.standardize = TRUE,
intercept = TRUE, lambda = NULL, n.lambda = NULL,
r.lambda = NULL, w.lambda = NULL, gamma = NULL, tau = NULL,
alpha = NULL, aiter.max = 100, b.eps = 1e-07)
|
y.vec |
(numeric vector) response vector.
Must be 0,1 for |
x.mat |
(numeric matrix) design matrix without intercept.
The censoring indicator must be included at the last column of the design matrix for |
family |
(character) regression model. Supported models are
|
penalty |
(character) penalty function.
Supported penalties are
|
x.standardize |
(logical) whether to standardize |
intercept |
(logical) whether to include an intercept in the model. |
lambda |
(numeric vector) user-specified sequence of |
n.lambda |
(numeric) the number of |
r.lambda |
(numeric) ratio of the smallest |
w.lambda |
(numeric vector) penalty weights for each coefficient (see references). If a penalty weight is set to 0, the corresponding coefficient is always nonzero. |
gamma |
(numeric) additional tuning parameter for controlling shrinkage effect of |
tau |
(numeric) concavity parameter of the penalties (see reference).
Default is 3.7 for |
alpha |
(numeric) ridge effect (weight between the penalty and ridge penalty) (see details).
Default value is 1. If penalty is |
aiter.max |
(numeric) maximum number of iterations in CD algorithm. |
b.eps |
(numeric) convergence threshold for coefficients vector. |
The function is used internal purpose but useful when users want to extract proper tuning parameters for ncpen.
Do not supply the samples from control.ncpen into ncpen or cv.ncpen directly to avoid unexpected errors.
An object with S3 class ncpen.
y.vec |
response vector. |
x.mat |
design matrix adjusted to supplied options such as family and intercept. |
family |
regression model. |
penalty |
penalty. |
x.standardize |
whether to standardize |
intercept |
whether to include the intercept. |
std |
scale factor for |
lambda |
lambda values for the analysis. |
n.lambda |
the number of |
r.lambda |
ratio of the smallest |
w.lambda |
penalty weights for each coefficient. |
gamma |
additional tuning parameter for controlling shrinkage effect of |
tau |
concavity parameter of the penalties (see references). |
alpha |
ridge effect (amount of ridge penalty). see details. |
Dongshin Kim, Sunghoon Kwon, Sangin Lee
Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96, 1348-60. Zhang, C.H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of statistics, 38(2), 894-942. Shen, X., Pan, W., Zhu, Y. and Zhou, H. (2013). On constrained and regularized high-dimensional regression. Annals of the Institute of Statistical Mathematics, 65(5), 807-832. Kwon, S., Lee, S. and Kim, Y. (2016). Moderately clipped LASSO. Computational Statistics and Data Analysis, 92C, 53-67. Kwon, S. Kim, Y. and Choi, H.(2013). Sparse bridge estimation with a diverging number of parameters. Statistics and Its Interface, 6, 231-242. Huang, J., Horowitz, J.L. and Ma, S. (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. The Annals of Statistics, 36(2), 587-613. Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of statistics, 36(4), 1509. Lee, S., Kwon, S. and Kim, Y. (2016). A modified local quadratic approximation algorithm for penalized optimization problems. Computational Statistics and Data Analysis, 94, 275-286.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ### linear regression with scad penalty
sam = sam.gen.ncpen(n=200,p=10,q=5,cf.min=0.5,cf.max=1,corr=0.5)
x.mat = sam$x.mat; y.vec = sam$y.vec
tun = control.ncpen(y.vec=y.vec,x.mat=x.mat,n.lambda=10,tau=1)
tun$tau
### multinomial regression with sridge penalty
sam = sam.gen.ncpen(n=200,p=10,q=5,k=3,cf.min=0.5,cf.max=1,corr=0.5,family="multinomial")
x.mat = sam$x.mat; y.vec = sam$y.vec
tun = control.ncpen(y.vec=y.vec,x.mat=x.mat,n.lambda=10,
family="multinomial",penalty="sridge",gamma=10)
### cox regression with mcp penalty
sam = sam.gen.ncpen(n=200,p=10,q=5,r=0.2,cf.min=0.5,cf.max=1,corr=0.5,family="cox")
x.mat = sam$x.mat; y.vec = sam$y.vec
tun = control.ncpen(y.vec=y.vec,x.mat=x.mat,n.lambda=10,family="cox",penalty="scad")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.