Nothing
testthat::test_that("trauma_03 produces expected results", {
# Synthetic test data 1
# for testing a first and last pain scale column
test_data1 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
evitals_27_1 = c(0, 2, 4, 6, 8),
evitals_27_2 = c(0, 1, 3, 5, 7),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# Expand data so each erecord_01 has 3 corresponding evitals_01 timestamps
test_data_expanded1 <- test_data1 |>
tidyr::uncount(weights = 3) |> # Repeat each row 3 times
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::case_when(
dplyr::row_number() == 1 ~ -5, # 5 minutes earlier
dplyr::row_number() == 2 ~ 0, # Original time
dplyr::row_number() == 3 ~ 5 # 5 minutes later
),
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# Synthetic test data 2
# for testing a single pain scale column
test_data2 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# Expand data so each erecord_01 has 2 rows (one for each pain score)
test_data_expanded2 <- test_data2 |>
tidyr::uncount(weights = 2) |> # Duplicate each row twice
dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |> # Assign pain scores
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# Run function
result <- suppressWarnings(trauma_03(
df = test_data_expanded1,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30,
confidence_interval = TRUE
))
# Check structure
testthat::expect_s3_class(result, "data.frame")
testthat::expect_true(all(c("measure", "pop", "numerator", "denominator", "prop", "prop_label", "lower_ci", "upper_ci") %in% names(result)))
# should throw a warning due to small counts
testthat::expect_warning(trauma_03(
df = test_data_expanded1,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30,
confidence_interval = TRUE
))
# Run function with the first and last pain score columns
result_1 <- trauma_03(
df = test_data_expanded1,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
# Check structure
testthat::expect_s3_class(result_1, "data.frame")
testthat::expect_true(all(c("measure", "pop", "numerator", "denominator", "prop", "prop_label") %in% names(result_1)))
# Check calculations
testthat::expect_equal(sum(result_1$numerator), 7)
testthat::expect_equal(sum(result_1$denominator), 7)
testthat::expect_equal(result_1$prop[result_1$pop == "Adults"], 1)
testthat::expect_equal(nrow(result_1), 3)
# Run function with the single pain score column
result_2 <- trauma_03(
df = test_data_expanded2,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = evitals_27,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
# Check structure
testthat::expect_s3_class(result_2, "data.frame")
testthat::expect_true(all(c("measure", "pop", "numerator", "denominator", "prop", "prop_label") %in% names(result_2)))
# Check calculations
testthat::expect_equal(sum(result_2$numerator), 7)
testthat::expect_equal(sum(result_2$denominator), 7)
testthat::expect_equal(result_2$prop[result_2$pop == "Adults"], 1)
testthat::expect_equal(nrow(result_2), 3)
# create tables to test correct functioning
patient_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01", "2025-01-01", "2025-06-01")),
patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-02-01", "2023-01-01", "1970-06-01")),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years")
)
# response table
response_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eresponse_05 = rep(2205001, 5)
)
# situation table
situation_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
esituation_02 = rep("Yes", 5),
)
# vitals table for first and last pain scale columns
vitals_table_1 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
evitals_27_1 = c(0, 2, 4, 6, 8),
evitals_27_2 = c(0, 1, 3, 5, 7)
) |>
tidyr::uncount(weights = 3) |> # Repeat each row 3 times
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::case_when(
dplyr::row_number() == 1 ~ -5, # 5 minutes earlier
dplyr::row_number() == 2 ~ 0, # Original time
dplyr::row_number() == 3 ~ 5 # 5 minutes later
),
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# vitals table for a single pain scale column
vitals_table_2 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00"))
) |>
tidyr::uncount(weights = 2) |> # Duplicate each row twice
dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |> # Assign pain scores
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
disposition_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# test the success of the function
# use the initial and last pain scale columns
result_3 <- trauma_03(patient_scene_table = patient_table,
response_table = response_table,
situation_table = situation_table,
vitals_table = vitals_table_1,
disposition_table = disposition_table,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
# Check calculations
testthat::expect_equal(sum(result_3$numerator), 8)
testthat::expect_equal(sum(result_3$denominator), 8)
testthat::expect_equal(result_3$prop[result_3$pop == "Adults"], 1)
testthat::expect_equal(nrow(result_3), 3)
# test the success of the function
# use the single pain scale column
result_4 <- trauma_03(patient_scene_table = patient_table,
response_table = response_table,
situation_table = situation_table,
vitals_table = vitals_table_2,
disposition_table = disposition_table,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = evitals_27,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
# Check calculations
testthat::expect_equal(sum(result_4$numerator), 8)
testthat::expect_equal(sum(result_4$denominator), 8)
testthat::expect_equal(result_4$prop[result_4$pop == "Adults"], 1)
testthat::expect_equal(nrow(result_4), 3)
})
testthat::test_that("trauma_03 handles missing data correctly", {
# Synthetic test data 1
# for testing a first and last pain scale column
test_data1 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c(NA, "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
evitals_27_1 = c(0, 2, 4, 6, NA),
evitals_27_2 = c(0, 1, 3, 5, NA),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, NA, 4230001, 4230007, NA)
)
# Expand data so each erecord_01 has 3 corresponding evitals_01 timestamps
test_data_expanded1 <- test_data1 |>
tidyr::uncount(weights = 3) |> # Repeat each row 3 times
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::case_when(
dplyr::row_number() == 1 ~ -5, # 5 minutes earlier
dplyr::row_number() == 2 ~ 0, # Original time
dplyr::row_number() == 3 ~ 5 # 5 minutes later
),
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# Synthetic test data 2
# for testing a single pain scale column
test_data2 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c(NA, "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, NA, 4230001, 4230007, NA)
)
# Expand data so each erecord_01 has 2 rows (one for each pain score)
test_data_expanded2 <- test_data2 |>
tidyr::uncount(weights = 2) |> # Duplicate each row twice
dplyr::mutate(evitals_27 = c(0, 0, 2, NA, 4, 3, 6, 5, 8, NA)) |> # Assign pain scores
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# run the function with first and last
# pain scale columns
result_1 <- trauma_03(
df = test_data_expanded1,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
testthat::expect_true(nrow(result_1) > 0)
testthat::expect_true(all(!is.na(result_1$denominator)))
# run the function with the single pain scale
# column
result_2 <- trauma_03(
df = test_data_expanded2,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = evitals_27,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
testthat::expect_true(nrow(result_2) > 0)
testthat::expect_true(all(!is.na(result_2$denominator)))
})
testthat::test_that("trauma_03 returns empty result for non-matching criteria", {
# Synthetic test data 1
# for testing a first and last pain scale column
test_data1 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
evitals_27_1 = c(0, 2, 4, 6, 8),
evitals_27_2 = c(0, 1, 3, 5, 7),
edisposition_28 = rep(4228001, 5),
edisposition_30 = rep("not a transport", 5)
)
# Expand data so each erecord_01 has 3 corresponding evitals_01 timestamps
test_data_expanded1 <- test_data1 |>
tidyr::uncount(weights = 3) |> # Repeat each row 3 times
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::case_when(
dplyr::row_number() == 1 ~ -5, # 5 minutes earlier
dplyr::row_number() == 2 ~ 0, # Original time
dplyr::row_number() == 3 ~ 5 # 5 minutes later
),
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# Synthetic test data 2
# for testing a single pain scale column
test_data2 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
edisposition_28 = rep(4228001, 5),
edisposition_30 = rep("not a transport", 5)
)
# Expand data so each erecord_01 has 2 rows (one for each pain score)
test_data_expanded2 <- test_data2 |>
tidyr::uncount(weights = 2) |> # Duplicate each row twice
dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |> # Assign pain scores
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# run the function with the
# initial and last pain scale
# columns
result_1 <- trauma_03(
df = test_data_expanded1,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
testthat::expect_equal(sum(result_1$denominator), 0)
# run the function with the
# single pain scale
# column
result_2 <- trauma_03(
df = test_data_expanded2,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = evitals_27,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
testthat::expect_equal(sum(result_2$denominator), 0)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.