Nothing
testthat::test_that("trauma_03_population rejects invalid argument combinations", {
testthat::expect_error(trauma_03_population(df = tibble::tibble(),
patient_scene_table = tibble::tibble(),
response_table = tibble::tibble(),
situation_table = tibble::tibble(),
vitals_table = tibble::tibble(),
disposition_table = tibble::tibble(),
erecord_01_col = character(),
epatient_15_col = numeric(),
epatient_16_col = character(),
eresponse_05_col = character(),
esituation_02_col = character(),
evitals_01_col = date(),
evitals_27_initial_col = numeric(),
evitals_27_last_col = numeric(),
evitals_27_col = NULL,
edisposition_28_col = character(),
transport_disposition_col = character()
),
"requires either a"
)
testthat::expect_error(trauma_03_population(df = tibble::tibble(),
patient_scene_table = tibble::tibble(),
response_table = tibble::tibble(),
situation_table = tibble::tibble(),
vitals_table = tibble::tibble(),
disposition_table = tibble::tibble(),
erecord_01_col = character(),
epatient_15_col = numeric(),
epatient_16_col = character(),
eresponse_05_col = character(),
esituation_02_col = character(),
evitals_01_col = date(),
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = numeric(),
edisposition_28_col = character(),
transport_disposition_col = character()
),
"requires either a"
)
testthat::expect_error(trauma_03_population(patient_scene_table = list(),
response_table = tibble::tibble(),
situation_table = tibble::tibble(),
vitals_table = tibble::tibble(),
disposition_table = tibble::tibble(),
erecord_01_col = character(),
epatient_15_col = numeric(),
epatient_16_col = character(),
incident_date_col = date(),
patient_DOB_col = date(),
eresponse_05_col = character(),
esituation_02_col = character(),
evitals_01_col = date(),
evitals_27_initial_col = numeric(),
evitals_27_last_col = numeric(),
evitals_27_col = NULL,
edisposition_28_col = character(),
transport_disposition_col = character()
),
"One or more of the tables passed to"
)
testthat::expect_error(trauma_03_population(patient_scene_table = list(),
response_table = tibble::tibble(),
situation_table = tibble::tibble(),
vitals_table = tibble::tibble(),
disposition_table = tibble::tibble(),
erecord_01_col = character(),
epatient_15_col = numeric(),
epatient_16_col = character(),
incident_date_col = date(),
patient_DOB_col = date(),
eresponse_05_col = character(),
esituation_02_col = character(),
evitals_01_col = date(),
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = numeric(),
edisposition_28_col = character(),
transport_disposition_col = character()
),
"One or more of the tables passed to"
)
})
testthat::test_that("trauma_03_population rejects missing required column arguments", {
testthat::expect_error(trauma_03_population(df = tibble::tibble(), epatient_15_col = "Age"),
"One or more of the \\*_col arguments is missing")
})
testthat::test_that("trauma_03_population rejects non-dataframe inputs", {
testthat::expect_error(trauma_03_population(df = list()),
"One or more")
testthat::expect_error(trauma_03_population(patient_scene_table = matrix()),
"One or more")
})
testthat::test_that("trauma_03_population validates date column formats", {
df_1 <- tibble::tibble(erecord_01_col = character(),
epatient_15_col = numeric(),
epatient_16_col = character(),
incident_date_col = character(),
patient_DOB_col = character(),
eresponse_05_col = character(),
esituation_02_col = character(),
evitals_01_col = date(),
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = numeric(),
edisposition_28_col = character(),
transport_disposition_col = character()
)
df_2 <- tibble::tibble(erecord_01_col = character(),
epatient_15_col = numeric(),
epatient_16_col = character(),
incident_date_col = character(),
patient_DOB_col = character(),
eresponse_05_col = character(),
esituation_02_col = character(),
evitals_01_col = date(),
evitals_27_initial_col = numeric(),
evitals_27_last_col = numeric(),
evitals_27_col = NULL,
edisposition_28_col = character(),
transport_disposition_col = character()
)
testthat::expect_error(
trauma_03_population(
df_1,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = evitals_27,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
)
testthat::expect_error(
trauma_03_population(
df_2,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
)
testthat::expect_error(
trauma_03_population(
patient_scene_table = tibble::tibble(),
response_table = tibble::tibble(),
situation_table = tibble::tibble(),
vitals_table = tibble::tibble(),
disposition_table = tibble::tibble(),
erecord_01_col = character(),
epatient_15_col = numeric(),
epatient_16_col = character(),
eresponse_05_col = character(),
esituation_02_col = character(),
evitals_01_col = date(),
evitals_27_initial_col = numeric(),
evitals_27_last_col = numeric(),
evitals_27_col = NULL,
edisposition_28_col = character(),
transport_disposition_col = character()
)
)
testthat::expect_error(
trauma_03_population(
patient_scene_table = tibble::tibble(),
response_table = tibble::tibble(),
situation_table = tibble::tibble(),
vitals_table = tibble::tibble(),
disposition_table = tibble::tibble(),
erecord_01_col = character(),
epatient_15_col = numeric(),
epatient_16_col = character(),
incident_date_col = character(),
patient_DOB_col = character(),
eresponse_05_col = character(),
esituation_02_col = character(),
evitals_01_col = date(),
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = numeric(),
edisposition_28_col = character(),
transport_disposition_col = character()
)
)
testthat::expect_error(
trauma_03_population(
patient_scene_table = tibble::tibble(),
response_table = tibble::tibble(),
situation_table = tibble::tibble(),
vitals_table = tibble::tibble(),
disposition_table = tibble::tibble(),
erecord_01_col = character(),
epatient_15_col = numeric(),
epatient_16_col = character(),
incident_date_col = character(),
patient_DOB_col = character(),
eresponse_05_col = character(),
esituation_02_col = character(),
evitals_01_col = character(),
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = numeric(),
edisposition_28_col = character(),
transport_disposition_col = character()
)
)
testthat::expect_error(
trauma_03_population(
df = tibble::tibble(),
erecord_01_col = character(),
epatient_15_col = numeric(),
epatient_16_col = character(),
incident_date_col = character(),
patient_DOB_col = character(),
eresponse_05_col = character(),
esituation_02_col = character(),
evitals_01_col = character(),
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = numeric(),
edisposition_28_col = character(),
transport_disposition_col = character()
)
)
})
testthat::test_that("trauma_03_population fails with unknown columns", {
# Synthetic test data 1
# for testing a first and last pain scale column
test_data1 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
evitals_27_1 = c(0, 2, 4, 6, 8),
evitals_27_2 = c(0, 1, 3, 5, 7),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# Expand data so each erecord_01 has 3 corresponding evitals_01 timestamps
test_data_expanded1 <- test_data1 |>
tidyr::uncount(weights = 3) |> # Repeat each row 3 times
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::case_when(
dplyr::row_number() == 1 ~ -5, # 5 minutes earlier
dplyr::row_number() == 2 ~ 0, # Original time
dplyr::row_number() == 3 ~ 5 # 5 minutes later
),
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
testthat::expect_error(trauma_03_population(test_data_expanded1,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
incident_date_col = NULL,
patient_DOB_col = NULL,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = "dummy",
transport_disposition_col = "dummy"
),
"exist"
)
})
testthat::test_that("trauma_03_population correctly classifies patient age", {
# Synthetic test data 1
# for testing a first and last pain scale column
test_data1 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01", "2025-01-01", "2025-06-01")),
patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-02-01", "2023-01-01", "1970-06-01")),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
evitals_27_1 = c(0, 2, 4, 6, 8),
evitals_27_2 = c(0, 1, 3, 5, 7),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# Expand data so each erecord_01 has 3 corresponding evitals_01 timestamps
test_data_expanded1 <- test_data1 |>
tidyr::uncount(weights = 3) |> # Repeat each row 3 times
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::case_when(
dplyr::row_number() == 1 ~ -5, # 5 minutes earlier
dplyr::row_number() == 2 ~ 0, # Original time
dplyr::row_number() == 3 ~ 5 # 5 minutes later
),
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# Synthetic test data 2
# for testing a single pain scale column
test_data2 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01", "2025-01-01", "2025-06-01")),
patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-02-01", "2023-01-01", "1970-06-01")),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# Expand data so each erecord_01 has 2 rows (one for each pain score)
test_data_expanded2 <- test_data2 |>
tidyr::uncount(weights = 2) |> # Duplicate each row twice
dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |> # Assign pain scores
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
result <- trauma_03_population(test_data_expanded1,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
incident_date_col = incident_date,
patient_DOB_col = patient_dob,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
testthat::expect_true(all(result$adults$system_age_adult == TRUE))
testthat::expect_true(all(result$adults$system_age_minor == FALSE))
result <- trauma_03_population(test_data_expanded2,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
incident_date_col = incident_date,
patient_DOB_col = patient_dob,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = evitals_27,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
testthat::expect_true(all(result$adults$system_age_adult == TRUE))
testthat::expect_true(all(result$adults$system_age_minor == FALSE))
# create tables to test correct functioning
patient_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01", "2025-01-01", "2025-06-01")),
patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-02-01", "2023-01-01", "1970-06-01")),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years")
)
# response table
response_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eresponse_05 = rep(2205001, 5)
)
# situation table
situation_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
esituation_02 = rep("Yes", 5),
)
# vitals table for first and last pain scale columns
vitals_table_1 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
evitals_27_1 = c(0, 2, 4, 6, 8),
evitals_27_2 = c(0, 1, 3, 5, 7)
) |>
tidyr::uncount(weights = 3) |> # Repeat each row 3 times
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::case_when(
dplyr::row_number() == 1 ~ -5, # 5 minutes earlier
dplyr::row_number() == 2 ~ 0, # Original time
dplyr::row_number() == 3 ~ 5 # 5 minutes later
),
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# vitals table for a single pain scale column
vitals_table_2 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00"))
) |>
tidyr::uncount(weights = 2) |> # Duplicate each row twice
dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |> # Assign pain scores
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
disposition_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
result <- trauma_03_population(patient_scene_table = patient_table,
response_table = response_table,
situation_table = situation_table,
vitals_table = vitals_table_1,
disposition_table = disposition_table,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
incident_date_col = incident_date,
patient_DOB_col = patient_dob,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
testthat::expect_true(all(result$adults$system_age_adult == TRUE))
testthat::expect_true(all(result$adults$system_age_minor == FALSE))
})
testthat::test_that("trauma_03_population correctly filters 911 calls", {
# Synthetic test data 1
# for testing a first and last pain scale column
test_data1 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
evitals_27_1 = c(0, 2, 4, 6, 8),
evitals_27_2 = c(0, 1, 3, 5, 7),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# Expand data so each erecord_01 has 3 corresponding evitals_01 timestamps
test_data_expanded1 <- test_data1 |>
tidyr::uncount(weights = 3) |> # Repeat each row 3 times
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::case_when(
dplyr::row_number() == 1 ~ -5, # 5 minutes earlier
dplyr::row_number() == 2 ~ 0, # Original time
dplyr::row_number() == 3 ~ 5 # 5 minutes later
),
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
result <- trauma_03_population(test_data_expanded1,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
incident_date_col = NULL,
patient_DOB_col = NULL,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
emergency_calls <- result$filter_process |>
dplyr::filter(filter == "911 calls") |>
dplyr::pull(count)
testthat::expect_equal(nrow(result$filter_process), 10)
testthat::expect_equal(emergency_calls, 5)
})
testthat::test_that("trauma_03_population runs correctly with table inputs", {
# create tables to test correct functioning
patient_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01", "2025-01-01", "2025-06-01")),
patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-02-01", "2023-01-01", "1970-06-01")),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years")
)
# response table
response_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eresponse_05 = rep(2205001, 5)
)
# situation table
situation_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
esituation_02 = rep("Yes", 5),
)
# vitals table for first and last pain scale columns
vitals_table_1 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")),
evitals_27_1 = c(0, 2, 4, 6, 8),
evitals_27_2 = c(0, 1, 3, 5, 7)
) |>
tidyr::uncount(weights = 3) |> # Repeat each row 3 times
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::case_when(
dplyr::row_number() == 1 ~ -5, # 5 minutes earlier
dplyr::row_number() == 2 ~ 0, # Original time
dplyr::row_number() == 3 ~ 5 # 5 minutes later
),
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# vitals table for a single pain scale column
vitals_table_2 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00"))
) |>
tidyr::uncount(weights = 2) |> # Duplicate each row twice
dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |> # Assign pain scores
dplyr::group_by(erecord_01) |>
dplyr::mutate(
time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
disposition_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# test the success of the function
result <- trauma_03_population(patient_scene_table = patient_table,
response_table = response_table,
situation_table = situation_table,
vitals_table = vitals_table_1,
disposition_table = disposition_table,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
incident_date_col = NULL,
patient_DOB_col = NULL,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = evitals_27_1,
evitals_27_last_col = evitals_27_2,
evitals_27_col = NULL,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
testthat::expect_equal(nrow(result$filter_process), 10)
testthat::expect_true(is.list(result))
result <- trauma_03_population(patient_scene_table = patient_table,
response_table = response_table,
situation_table = situation_table,
vitals_table = vitals_table_2,
disposition_table = disposition_table,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
incident_date_col = NULL,
patient_DOB_col = NULL,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = evitals_27,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30
)
testthat::expect_equal(nrow(result$filter_process), 10)
testthat::expect_true(is.list(result))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.