Nothing
# Define UI for application that draws a histogram
fluidPage(
theme = shinytheme("sandstone"),
tags$head(
tags$style(HTML("
.title {
font-family: 'montserrat';
font-size: 24px;
color: #000080;
text-align: center;
font-weight: bold;
}
.sub-title{
font-family: 'montserrat';
font-size: 16px;
color: #000080;
text-align: left;
font-weight: bold;
}
.sub-sub-title{
font-family : 'montserrat';
font-size: 14px;
color: #000000;
text-align: left;
font-weight: bold;
}
#summarydist {
border-collapse: collapse;
width: 100%;
font-size: 14px;
}
#summarydist th {
color : #000080;
}
#summarydist td, #summarydist th {
border: 1px solid #ddd;
padding: 8px;
}
#summarydist tr:nth-child(even) {
background-color: #308fc2;
}
#summarydist th {
padding-top: 12px;
padding-bottom: 12px;
text-align: left;
background-color: #3279a8;
color: white;
}
"))
),
# Application title
titlePanel(div(textOutput("titleDash"), class = "title")),
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
width=3,
selectInput("menu", "Select an option:", choices = c("Probability" = "prob", "Characteristics" = "char")),
# Data probasi
conditionalPanel(
condition = "input.menu=='prob'",
radioButtons("dist", "Choose distribution:", choices = c("MSNBurr" = "msnburr", "MSNBurr-IIa" = "msnburr2a", "GMSNBurr" = "gmsnburr", "Jones-Faddy's Skew-t" = "jfst"), selected = "msnburr"),
numericInput("num_samples", "Number of samples:", value = 100),
conditionalPanel(
condition = "input.dist=='msnburr'",
sliderInput("bmu", "mu (μ)", min = -10, max = 10, step = 0.01, value = 0),
sliderInput("bsigma", "sigma (σ)", min = 0.01, max = 10, step = 0.01, value = 1),
sliderInput("balpha", "alpha (α)", min = 0.01, max = 10, step = 0.01, value = 1)
),
conditionalPanel(
condition = "input.dist=='msnburr2a'",
sliderInput("b2mu", "mu (μ)", min = -10, max = 10, step = 0.01, value = 0),
sliderInput("b2sigma", "sigma (σ)", min = 0.01, max = 10, step = 0.01, value = 1),
sliderInput("b2alpha", "alpha (α)", min = 0.01, max = 10, step = 0.01, value = 1)
),
conditionalPanel(
condition = "input.dist=='gmsnburr'",
sliderInput("gmu", "mu (μ)", min = -10, max = 10, step = 0.01, value = 0),
sliderInput("gsigma", "sigma (σ)", min = 0.01, max = 10, step = 0.01, value = 1),
sliderInput("galpha", "alpha (α)", min = 0.01, max = 10, step = 0.01, value = 1),
sliderInput("gbeta", "beta (β)", min = 0.01, max = 10, step = 0.01, value = 1)
),
conditionalPanel(
condition = "input.dist=='jfst'",
sliderInput("jmu", "mu (μ)", min = -10, max = 10, step = 0.01, value = 0),
sliderInput("jsigma", "sigma (σ)", min = 0.01, max = 15, step = 0.01, value = 1),
sliderInput("jalpha", "alpha (α)", min = 1, max = 15, step = 0.01, value = 2),
sliderInput("jbeta", "beta (β)", min = 1, max = 15, step = 0.01, value = 2)
)
),
# charistik distribusi
conditionalPanel(
condition = "input.menu=='char'",
radioButtons("kdist", "Choose distribution:", choices = c("MSNBurr" = "msnburr", "MSNBurr-IIa" = "msnburr2a", "GMSNBurr" = "gmsnburr", "Jones-Faddy's Skew-t" = "jfst"), selected = "msnburr"),
conditionalPanel(
condition = "input.kdist=='msnburr'",
sliderInput("kbmu", "mu (μ)", min = -10, max = 10, step = 0.01, value = 0),
sliderInput("kbsigma", "sigma (σ)", min = 0.01, max = 10, step = 0.01, value = 1),
sliderInput("kbalpha", "alpha (α)", min = 0.01, max = 30, step=0.01, value = 1)
),
conditionalPanel(
condition = "input.kdist=='msnburr2a'",
sliderInput("kb2mu", "mu (μ)", min = -10, max = 10, step = 0.01, value = 0),
sliderInput("kb2sigma", "sigma (σ)", min = 0.01, max = 10, step = 0.01, value = 1),
sliderInput("kb2alpha", "alpha (α)", min = 0.01, max = 30, step = 0.01, value = 1)
),
conditionalPanel(
condition = "input.kdist=='gmsnburr'",
sliderInput("kgmu", "mu (μ)", min = -10, max = 10, step = 0.01, value =0),
sliderInput("kgsigma", "sigma (σ)", min = 0.01, max = 10, step = 0.01,value =c(1)),
sliderInput("kgalpha", "alpha (α)", min = 0.01, max = 30, step = 0.01, value = c(1)),
sliderInput("kgbeta", "beta (β)", min = 0.01, max = 30, step = 0.01, value =c(1))
),
conditionalPanel(
condition = "input.kdist=='jfst'",
sliderInput("kjmu", "mu (μ)", min = -10, max = 10, step = 0.01, value = 0),
sliderInput("kjsigma", "sigma (σ)", min = 0.01, max = 10, step = 0.01, value = 1),
sliderInput("kjalpha", "alpha (α)", min = 2.1, max = 15, step = 0.01, value = 3),
sliderInput("kjbeta", "beta (β)", min = 2.1, max = 15, step = 0.01, value = 3)
)
)
),
# Show a plot of the generated distribution
mainPanel(
conditionalPanel(
condition = "input.menu=='prob'",
# titlePanel(div(textOutput("describe"), class = "sub-title")),
fluidRow(
column(6, plotOutput("pdfPlot")), # Baris ketiga, 2 kolom
column(6, plotOutput("cdfPlot")),
align="center"
),
fluidRow(
column(12,plotOutput("densityneo")),
align="center"
)
),
conditionalPanel(
condition = "input.menu=='char'",
# titlePanel(div("Characteristics of the Neo-normal Distribution.", class = "sub-title")),
fluidRow(
titlePanel(div(textOutput("tableText"), class = "sub-sub-title")),
tableOutput("summarydist")
),
fluidRow(
column(6, plotlyOutput("skewPlot")), # Baris kedua, 2 kolom
column(6, plotlyOutput("kurtoPlot"))
)
)
)
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.