R/RcppExports.R

Defines functions univariatePoissonNetworkLerouxAllUpdate univariateGaussianNetworkLerouxAllMHUpdate univariateBinomialNetworkLerouxAllUpdate multivariatePoissonNetworkRandAllUpdate multivariatePoissonNetworkLerouxAllUpdate multivariateGaussianNetworkRandAllUpdate multivariateGaussianNetworkLerouxAllMHUpdate multivariateBinomialNetworkRandAllUpdate multivariateBinomialNetworkLerouxAllUpdate getTripletForm

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

getTripletForm <- function(membershipMatrix) {
    .Call(`_netcmc_getTripletForm`, membershipMatrix)
}

multivariateBinomialNetworkLerouxAllUpdate <- function(standardizedX, trials, y, numberOfResponses, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSpatialAreas, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, varianceCovarianceU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, xi, omega, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, varianceCovarianceUFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueVarianceCovarianceUValues, centerSpatialRandomEffects, centerURandomEffects) {
    .Call(`_netcmc_multivariateBinomialNetworkLerouxAllUpdate`, standardizedX, trials, y, numberOfResponses, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSpatialAreas, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, varianceCovarianceU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, xi, omega, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, varianceCovarianceUFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueVarianceCovarianceUValues, centerSpatialRandomEffects, centerURandomEffects)
}

multivariateBinomialNetworkRandAllUpdate <- function(standardizedX, trials, y, numberOfResponses, V, W, VInTripletForm, WInTripletForm, beta, vRandomEffects, uRandomEffects, varianceCovarianceV, varianceCovarianceU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, vRandomEffectsTuningParameters, vRandomEffectsAcceptanceRate, numberOfAcceptedVREDraws, numberOfAllAcceptedVREDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, xiV, omegaV, xi, omega, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, vRandomEffectsFixed, uRandomEffectsFixed, varianceCovarianceVFixed, varianceCovarianceUFixed, trueBetaValues, trueVRandomEffectsValues, trueURandomEffectsValues, trueVarianceCovarianceVValues, trueVarianceCovarianceUValues, centerVRandomEffects, centerURandomEffects) {
    .Call(`_netcmc_multivariateBinomialNetworkRandAllUpdate`, standardizedX, trials, y, numberOfResponses, V, W, VInTripletForm, WInTripletForm, beta, vRandomEffects, uRandomEffects, varianceCovarianceV, varianceCovarianceU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, vRandomEffectsTuningParameters, vRandomEffectsAcceptanceRate, numberOfAcceptedVREDraws, numberOfAllAcceptedVREDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, xiV, omegaV, xi, omega, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, vRandomEffectsFixed, uRandomEffectsFixed, varianceCovarianceVFixed, varianceCovarianceUFixed, trueBetaValues, trueVRandomEffectsValues, trueURandomEffectsValues, trueVarianceCovarianceVValues, trueVarianceCovarianceUValues, centerVRandomEffects, centerURandomEffects)
}

multivariateGaussianNetworkLerouxAllMHUpdate <- function(standardizedX, y, numberOfResponses, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSpatialAreas, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, varianceCovarianceU, sigmaSquaredE, covarianceBetaPrior, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, xi, omega, a3, b3, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, varianceCovarianceUFixed, sigmaSquaredEFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueVarianceCovarianceUValues, trueSigmaSquaredEValues, centerSpatialRandomEffects, centerURandomEffects) {
    .Call(`_netcmc_multivariateGaussianNetworkLerouxAllMHUpdate`, standardizedX, y, numberOfResponses, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSpatialAreas, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, varianceCovarianceU, sigmaSquaredE, covarianceBetaPrior, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, xi, omega, a3, b3, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, varianceCovarianceUFixed, sigmaSquaredEFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueVarianceCovarianceUValues, trueSigmaSquaredEValues, centerSpatialRandomEffects, centerURandomEffects)
}

multivariateGaussianNetworkRandAllUpdate <- function(standardizedX, y, numberOfResponses, V, W, VInTripletForm, WInTripletForm, beta, vRandomEffects, uRandomEffects, varianceCovarianceV, varianceCovarianceU, sigmaSquaredE, covarianceBetaPrior, xiV, omegaV, xi, omega, a3, b3, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, vRandomEffectsFixed, uRandomEffectsFixed, varianceCovarianceVFixed, varianceCovarianceUFixed, sigmaSquaredEFixed, trueBetaValues, trueVRandomEffectsValues, trueURandomEffectsValues, trueVarianceCovarianceVValues, trueVarianceCovarianceUValues, trueSigmaSquaredEValues, centerVRandomEffects, centerURandomEffects) {
    .Call(`_netcmc_multivariateGaussianNetworkRandAllUpdate`, standardizedX, y, numberOfResponses, V, W, VInTripletForm, WInTripletForm, beta, vRandomEffects, uRandomEffects, varianceCovarianceV, varianceCovarianceU, sigmaSquaredE, covarianceBetaPrior, xiV, omegaV, xi, omega, a3, b3, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, vRandomEffectsFixed, uRandomEffectsFixed, varianceCovarianceVFixed, varianceCovarianceUFixed, sigmaSquaredEFixed, trueBetaValues, trueVRandomEffectsValues, trueURandomEffectsValues, trueVarianceCovarianceVValues, trueVarianceCovarianceUValues, trueSigmaSquaredEValues, centerVRandomEffects, centerURandomEffects)
}

multivariatePoissonNetworkLerouxAllUpdate <- function(standardizedX, y, numberOfResponses, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSpatialAreas, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, varianceCovarianceU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, xi, omega, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, varianceCovarianceUFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueVarianceCovarianceUValues, centerSpatialRandomEffects, centerURandomEffects) {
    .Call(`_netcmc_multivariatePoissonNetworkLerouxAllUpdate`, standardizedX, y, numberOfResponses, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSpatialAreas, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, varianceCovarianceU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, xi, omega, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, varianceCovarianceUFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueVarianceCovarianceUValues, centerSpatialRandomEffects, centerURandomEffects)
}

multivariatePoissonNetworkRandAllUpdate <- function(standardizedX, y, numberOfResponses, V, W, VInTripletForm, WInTripletForm, beta, vRandomEffects, uRandomEffects, varianceCovarianceV, varianceCovarianceU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, vRandomEffectsTuningParameters, vRandomEffectsAcceptanceRate, numberOfAcceptedVREDraws, numberOfAllAcceptedVREDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, xiV, omegaV, xi, omega, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, vRandomEffectsFixed, uRandomEffectsFixed, varianceCovarianceVFixed, varianceCovarianceUFixed, trueBetaValues, trueVRandomEffectsValues, trueURandomEffectsValues, trueVarianceCovarianceVValues, trueVarianceCovarianceUValues, centerVRandomEffects, centerURandomEffects) {
    .Call(`_netcmc_multivariatePoissonNetworkRandAllUpdate`, standardizedX, y, numberOfResponses, V, W, VInTripletForm, WInTripletForm, beta, vRandomEffects, uRandomEffects, varianceCovarianceV, varianceCovarianceU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, vRandomEffectsTuningParameters, vRandomEffectsAcceptanceRate, numberOfAcceptedVREDraws, numberOfAllAcceptedVREDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, xiV, omegaV, xi, omega, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, vRandomEffectsFixed, uRandomEffectsFixed, varianceCovarianceVFixed, varianceCovarianceUFixed, trueBetaValues, trueVRandomEffectsValues, trueURandomEffectsValues, trueVarianceCovarianceVValues, trueVarianceCovarianceUValues, centerVRandomEffects, centerURandomEffects)
}

univariateBinomialNetworkLerouxAllUpdate <- function(standardizedX, trials, y, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSpatialAreas, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, sigmaSquaredU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, a2, b2, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, sigmaSquaredUFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueSigmaSquaredUValues, centerSpatialRandomEffects, centerURandomEffects) {
    .Call(`_netcmc_univariateBinomialNetworkLerouxAllUpdate`, standardizedX, trials, y, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSpatialAreas, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, sigmaSquaredU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, a2, b2, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, sigmaSquaredUFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueSigmaSquaredUValues, centerSpatialRandomEffects, centerURandomEffects)
}

univariateGaussianNetworkLerouxAllMHUpdate <- function(standardizedX, y, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, sigmaSquaredU, sigmaSquaredE, covarianceBetaPrior, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, a2, b2, a3, b3, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, sigmaSquaredUFixed, sigmaSquaredEFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueSigmaSquaredUValues, trueSigmaSquaredEValues, centerSpatialRandomEffects, centerURandomEffects) {
    .Call(`_netcmc_univariateGaussianNetworkLerouxAllMHUpdate`, standardizedX, y, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, sigmaSquaredU, sigmaSquaredE, covarianceBetaPrior, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, a2, b2, a3, b3, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, sigmaSquaredUFixed, sigmaSquaredEFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueSigmaSquaredUValues, trueSigmaSquaredEValues, centerSpatialRandomEffects, centerURandomEffects)
}

univariatePoissonNetworkLerouxAllUpdate <- function(standardizedX, y, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSpatialAreas, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, sigmaSquaredU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, a2, b2, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, sigmaSquaredUFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueSigmaSquaredUValues, centerSpatialRandomEffects, centerURandomEffects) {
    .Call(`_netcmc_univariatePoissonNetworkLerouxAllUpdate`, standardizedX, y, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSpatialAreas, squareSpatialNeighbourhoodMatrixInTripletForm, spatialAssignmentMatrixInTripletForm, WInTripletForm, beta, spatialRandomEffects, uRandomEffects, spatialTauSquared, spatialRho, sigmaSquaredU, covarianceBetaPrior, numberOfBetaBlocks, maxBetaBlockSize, betaTuningParameter, betaAcceptanceRate, numberOfAcceptedBetaDraws, numberOfAllAcceptedBetaDraws, spatialRandomEffectsTuningParameters, spatialRandomEffectsAcceptanceRate, numberOfAcceptedSpatialRandomEffectsDraws, numberOfAllAcceptedSpatialRandomEffectsDraws, uRandomEffectsTuningParameters, uRandomEffectsAcceptanceRate, numberOfAcceptedUREDraws, numberOfAllAcceptedUREDraws, spatialRhoTuningParameters, spatialRhoAcceptanceRate, numberOfAcceptedSpatialRhoDraws, numberOfAllAcceptedSpatialRhoDraws, a1, b1, a2, b2, currentNumberOfIterations, numberOfSamples, burnin, thin, betaFixed, spatialRandomEffectsFixed, uRandomEffectsFixed, spatialTauSquaredFixed, spatialRhoFixed, sigmaSquaredUFixed, trueBetaValues, trueSpatialRandomEffectsValues, trueURandomEffectsValues, trueSpatialTauSquaredValues, trueSpatialRhoValues, trueSigmaSquaredUValues, centerSpatialRandomEffects, centerURandomEffects)
}

Try the netcmc package in your browser

Any scripts or data that you put into this service are public.

netcmc documentation built on Nov. 10, 2022, 5:11 p.m.