Nothing
#
# This function estimates the difference in MEMS between two models
#
#
# partial_model is the model object without intervening variables
# full_model is the model with intervening variables.
#micro_process is the micro process of interest, provided as a character string. For SAOM, it should be as per the effectName parameter in your SAOM effects object. For example, effects_obj$effectName
#macro_function is the function to be calculated on the network object. NOTE: currently only supports statistics calculated on network and igraph objects.
#object type is the type of object used in the function to calculate macro statistics. Currently only supports igraph and network objects. If left NULL, the object is assumed to be a network object.
#the interval provides the values over which to calculate the MEMS. It defaults to 0 and 1
#nsim is the number of Monte Carlo samples
# silent tells R whether to provide updates on the algorithm's progress
#full_output tells R whether to return simulated distribution in addition to summary statistic
#model_comparison tells R whether to test the robustness of direct, total, and indirect MEMS estimates to choice of model
#partial_model2 is an optional parameter used only when model_comparison is TRUE. It should be the alternative model to compare partial MEMS estimates
#full_model 2 is an optional parameter used only when model_comparison is TRUE. It should be a alternative model to compare the full MEMS estimates
#micro_process2 is an optional parameter used only when model_comparison is set to TRUE. It should be the character string denoting the micro process in full_model2 and partial_model2
mediate_MEMS <- function(partial_model,
full_model,
micro_process,
macro_function,
model_comparison = FALSE,
partial_model2 = NULL,
full_model2 = NULL,
micro_process2 = NULL,
macro_function2 = NULL,
object_type = NULL,
interval = c(0, 1),
nsim = 500,
algorithm = "parametric",
silent = FALSE,
full_output = FALSE,
sensitivity_ev = TRUE, # <-- NEW argument added
SAOM_data = NULL,
SAOM_var = NULL,
time_interval = NULL,
covar_list = NULL,
edgelist = NULL,
net_logit_y = NULL,
net_logit_x = NULL,
group_id = NULL,
node_numbers = NULL,
mediator = NULL,
link_id = NULL,
controls = NULL,
control_functions = NULL) {
if (model_comparison == FALSE) {
result <- compare_MEMS(partial_model = partial_model,
full_model = full_model,
micro_process = micro_process,
micro_process2 = micro_process2,
macro_function = macro_function,
macro_function2 = macro_function2,
object_type = object_type,
interval = interval,
nsim = nsim,
algorithm = algorithm,
silent = silent,
full_output = full_output,
sensitivity_ev = sensitivity_ev, # <-- Pass new argument
SAOM_data = SAOM_data,
SAOM_var = SAOM_var,
time_interval = time_interval,
covar_list = covar_list,
edgelist = edgelist,
net_logit_y = net_logit_y,
net_logit_x = net_logit_x,
group_id = group_id,
node_numbers = node_numbers,
mediator = mediator,
link_id = link_id,
controls = controls,
control_functions = control_functions)
return(result)
}
return_samples <- FALSE
if (full_output == TRUE) {
return_samples <- TRUE
}
if (isTRUE(model_comparison)) {
if (is.null(partial_model2) | is.null(full_model2) | is.null(micro_process2)) {
stop("partial_model2, full_model2, and micro_process2 must be provided when model_comparison is set to TRUE")
}
}
message("Estimating mediation results for model set 1")
model_set1 <- compare_MEMS(partial_model = partial_model,
full_model = full_model,
micro_process = micro_process,
macro_function = macro_function,
macro_function2 = NULL,
object_type = object_type,
interval = interval,
nsim = nsim,
algorithm = algorithm,
silent = silent,
full_output = TRUE,
sensitivity_ev = sensitivity_ev, # <-- Pass new argument
SAOM_data = SAOM_data,
SAOM_var = SAOM_var,
time_interval = time_interval,
covar_list = covar_list,
edgelist = edgelist,
net_logit_y = net_logit_y,
net_logit_x = net_logit_x,
group_id = group_id,
node_numbers = node_numbers,
mediator = mediator,
link_id = link_id,
controls = controls,
control_functions = control_functions)
message("Estimating mediation results for model set 2")
if (!is.null(macro_function2)) {
macro_function <- macro_function2
}
model_set2 <- compare_MEMS(partial_model = partial_model2,
full_model = full_model2,
micro_process = micro_process2,
macro_function = macro_function,
macro_function2 = NULL,
object_type = object_type,
interval = interval,
nsim = nsim,
algorithm = algorithm,
silent = silent,
full_output = TRUE,
sensitivity_ev = sensitivity_ev, # <-- Pass new argument
SAOM_data = SAOM_data,
SAOM_var = SAOM_var,
time_interval = time_interval,
covar_list = covar_list,
edgelist = edgelist,
net_logit_y = net_logit_y,
net_logit_x = net_logit_x,
group_id = group_id,
node_numbers = node_numbers,
mediator = mediator,
link_id = link_id,
controls = controls,
control_functions = control_functions)
sens_test_dat <- matrix(NA, nrow = 3, ncol = 5)
colnames(sens_test_dat) <- c("Change in estimate between models", "Std. Dev.", "Low 95% CI", "Upp. 95% CI", "MC p-val")
rownames(sens_test_dat) <- c("Partial MEMS", "Full MEMS", "Indirect MEMS")
# Estimates
sens_test_dat[, 1] <- model_set1$diff_MEMS_results$diff_summary[, 1] - model_set2$diff_MEMS_results$diff_summary[, 1]
sens_test_dat[, 2] <- c(sd(model_set1$p_MEMS_results$mems_samples - model_set2$p_MEMS_results$mems_samples, na.rm = TRUE),
sd(model_set1$f_MEMS_results$mems_samples - model_set2$f_MEMS_results$mems_samples, na.rm = TRUE),
sd(model_set1$diff_MEMS_results$diff_samples - model_set2$diff_MEMS_results$diff_samples, na.rm = TRUE))
sens_test_dat[, 3] <- c(quantile(model_set1$p_MEMS_results$mems_samples - model_set2$p_MEMS_results$mems_samples, .025, na.rm = TRUE),
quantile(model_set1$f_MEMS_results$mems_samples - model_set2$f_MEMS_results$mems_samples, .025, na.rm = TRUE),
quantile(model_set1$diff_MEMS_results$diff_samples - model_set2$diff_MEMS_results$diff_samples, .025, na.rm = TRUE))
sens_test_dat[, 4] <- c(quantile(model_set1$p_MEMS_results$mems_samples - model_set2$p_MEMS_results$mems_samples, .975, na.rm = TRUE),
quantile(model_set1$f_MEMS_results$mems_samples - model_set2$f_MEMS_results$mems_samples, .975, na.rm = TRUE),
quantile(model_set1$diff_MEMS_results$diff_samples - model_set2$diff_MEMS_results$diff_samples, .975, na.rm = TRUE))
d1 <- model_set1$p_MEMS_results$mems_samples - model_set2$p_MEMS_results$mems_samples
sens_test_dat[1, 5] <- if (sens_test_dat[1, 1] < 0) {
length(d1[d1 > 0]) / nsim
} else {
length(d1[d1 < 0]) / nsim
}
d2 <- model_set1$f_MEMS_results$mems_samples - model_set2$f_MEMS_results$mems_samples
sens_test_dat[2, 5] <- if (sens_test_dat[2, 1] < 0) {
length(d2[d2 > 0]) / nsim
} else {
length(d2[d2 < 0]) / nsim
}
d3 <- model_set1$diff_MEMS_results$diff_samples - model_set2$diff_MEMS_results$diff_samples
sens_test_dat[3, 5] <- if (sens_test_dat[3, 1] < 0) {
length(d3[d3 > 0]) / nsim
} else {
length(d3[d3 < 0]) / nsim
}
results <- list(model_set1 = model_set1$diff_MEMS_results$diff_summary,
model_set2 = model_set2$diff_MEMS_results$diff_summary,
model_comparison = sens_test_dat)
if (return_samples == TRUE) {
sample_dat <- list(model_set1 = model_set1,
model_set2 = model_set2,
sens_test = list(diff_MEMS_results = d3,
p_MEMS_results = d1,
f_MEMS_results = d2))
results <- list(summary_results = results,
sample_results = sample_dat)
}
return(results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.