R/meta-aux.R

Defines functions setNA_nma setNA_vars setNA_subset setNA basic2all phi runNN deprecated2 deprecated stoponly augment catchvar warnarg replaceNA replaceNULL npn int2num catch byvarname bylevs

# Auxiliary functions
#
# Package: meta
# Author: Guido Schwarzer <guido.schwarzer@uniklinik-freiburg.de>
# License: GPL (>= 2)
#

bylevs <- function(x) {
  if (is.factor(x))
    res <- levels(factor(x))
  else
    res <- unique(x)
  res
}

byvarname <- function(argname, matchcall) {
  #
  # Determine name of subgroup variable
  #
  res <- as.character(matchcall[[match(argname, names(matchcall))]])
  #
  if (length(res) > 1 & res[1] == "$")
    res <- res[length(res)]
  #
  if (length(res) == 0 || length(res) > 1)
    res <- "subgroup"
  #
  res
}

catch <- function(argname, matchcall, data, encl) {
  #
  # Catch value for argument
  #
  eval(matchcall[[match(argname, names(matchcall))]], data, enclos = encl)
}

int2num <- function(x) {
  #
  # Convert integer to numeric
  #
  if (is.integer(x))
    res <- as.numeric(x)
  else
    res <- x
  #
  res
}

npn <- function(x) {
  #
  # Check for non-positive values in vector
  #
  selNA <- is.na(x)
  res <- selNA
  if (sum(!selNA) > 0)
    x[!selNA] <- x[!selNA] <= 0
  #
  res
}

replaceNULL <- function(x, replace = NA) {
  if (is.null(x))
    return(replace)
  x
}

replaceNA <- function(x, replace = NA) {
  if (is.null(x))
    return(x)
  else
    x[is.na(x)] <- replace
  x
}

warnarg <- function(x, y, fun, cl, otherarg) {
  if (x %in% y)
    if (!missing(cl))
      warning("Argument '", x, "' has been removed from R function ", fun,
              ".\nThis argument can be used in R function ", cl, ".",
              call. = FALSE)
    else if (!missing(otherarg))
      warning("Argument '", x, "' has been replaced by argument '", otherarg,
              "' in R function ", fun, ".\nSee help page of R function ",
              fun, " for information on the use of the new argument.",
              call. = FALSE)
  #
  invisible(NULL)
}

catchvar <- function(varname, x, mf) {
  res <- NULL
  error <-
    try(res <- eval(mf[[match(varname, names(mf))]],
                    x,
                    enclos = sys.frame(sys.parent())),
        silent = TRUE)
  #
  if (inherits(error, "try-error")) {
    res <- eval(mf[[match(varname, names(mf))]],
                x$data, enclos = NULL)
  }
  #
  res
}

augment <- function(x, len, fun) {
  if (length(x) > 1)
    chklength(x, len, fun)
  else
    x <- rep(x, len)
  x
}

stoponly <- function(arg, val, func)
  stop("Argument ", arg, " =\"", val, "\"",
       " only defined for meta-analysis conducted with ",
       func, ".",
       call. = FALSE)

deprecated <- function(newvar, newmiss, args, old, warn = TRUE) {
  #
  new <- deparse(substitute(newvar))
  #
  if (length(args) == 0)
    return(newvar)
  #
  if (is.list(args[[1]]))
    args <- args[[1]]
  #
  additional.arguments <- names(args)
  #
  if (!is.na(charmatch(old, additional.arguments)))
    if (!newmiss) {
      if (warn)
        warning("Deprecated argument '", old, "' ignored as ",
                "'", new, "' is also provided.",
                call. = FALSE)
      return(newvar)
    }
    else {
      if (warn)
        warning("Use argument '", new, "' instead of '",
                old, "' (deprecated).",
                call. = FALSE)
      return(args[[charmatch(old, additional.arguments)]])
    }
  else
    return(newvar)
}

deprecated2 <- function(newvar, newmiss, oldvar, oldmiss, warn = TRUE) {
  #
  new <- deparse(substitute(newvar))
  old <- deparse(substitute(oldvar))
  #
  if (newmiss & oldmiss)
    return(newvar)
  else if (!newmiss & oldmiss)
    return(newvar)
  else if (!newmiss & !oldmiss) {
    if (warn)
      warning("Deprecated argument '", old, "' ignored as ",
              "'", new, "' is also provided.",
              call. = FALSE)
    return(newvar)
  }
  else if (newmiss & !oldmiss) {
    if (warn)
      warning("Use argument '", new, "' instead of '",
              old, "' (deprecated).",
              call. = FALSE)
    return(oldvar)
  }
}

runNN <- function(func, args, warn = TRUE) {
  args <- args[!sapply(args, is.null)]
  if (warn)
    do.call(func, args)
  else
    suppressWarnings(do.call(func, args))
}

# Estimate the heterogeneity parameter phi using the
# modified version of Pearson's statistic.
#
phi <- function(x) {
  # Extract number of trials
  n.trials <- x$prior.weights
  #
  if (identical(unique(n.trials), 1))
    stop("The number of successes must be summarized for valid computation of ",
         "c-hat.")
  
  # Pearson chi-square
  chisq <- sum(residuals(x, type = "pearson")^2)
  
  # Extract raw residuals
  raw.res <- residuals(x, type = "response")
  
  # Extract fitted values
  fit.vals <- fitted(x)
  
  # Estimate s.bar
  s.bar <- mean((1 - 2 * fit.vals) / ((n.trials * fit.vals) * (1 - fit.vals)))
  
  # Calculate estimate based on Fletcher estimator
  phi <- (chisq / x$df.residual) / (1 + s.bar)
  
  # Set phi = 1 if phi < 1 to remain consistent with common effect model
  phi <- max(phi, 1)
  
  phi
}

# Gets as arguments
# - 'trts' = treatment names,
# - 'TE.basic' = basic treatment effect estimates,
# - 'vcov.basic' = variance-covariance matrix of the estimates.
#
# Returns all NMA estimates (basic + functional) and their standard errors.
#
basic2all <- function(trts, TE.basic, vcov.basic) {
  
  n.trts <- length(trts)
  
  # Get rid of warning 'no visible binding for global variable'
  treat1 <- treat2 <- NULL
  
  # Identify all comparisons
  #
  comps <- expand.grid(treat1 = seq_len(n.trts), treat2 = seq_len(n.trts))
  comps <- subset(comps, treat2 < treat1)
  #
  comps.basic <- subset(comps, treat2 == 1)
  comps.other <- subset(comps, treat2 > 1)
  #
  n.comps.basic <- nrow(comps.basic)
  n.comps.other <- nrow(comps.other)
  
  # Construct X matrix, i.e., the treatment comparison matrix
  #
  X.basic <- matrix(0, nrow = n.comps.other, ncol = n.comps.basic)
  #
  for (i in seq_len(n.comps.other)) {
    for (j in seq_len(n.comps.basic)) {
      if (comps.other$treat1[i] == comps.basic$treat1[j])
        X.basic[i, j] <- 1
      #
      if (comps.other$treat2[i] == comps.basic$treat1[j])
        X.basic[i, j] <- -1
    }
  }
  
  dat.basic <-
    data.frame(comps.basic,
               TE = TE.basic,
               seTE = sqrt(diag(vcov.basic)))
  #
  dat.other <-
    data.frame(comps.other,
               TE = X.basic %*% TE.basic,
               seTE = sqrt(diag(X.basic %*% vcov.basic %*% t(X.basic))))
  #
  dat.comps <- rbind(dat.basic, dat.other)
  
  TEs <- matrix(NA, ncol = n.trts, nrow = n.trts)
  seTEs <- matrix(NA, ncol = n.trts, nrow = n.trts)
  #
  for (i in seq_len(nrow(dat.comps))) {
    TEs[dat.comps$treat1[i], dat.comps$treat2[i]] <-  dat.comps$TE[i]
    TEs[dat.comps$treat2[i], dat.comps$treat1[i]] <- -dat.comps$TE[i]
    #
    seTEs[dat.comps$treat1[i], dat.comps$treat2[i]] <- dat.comps$seTE[i]
    seTEs[dat.comps$treat2[i], dat.comps$treat1[i]] <- dat.comps$seTE[i]
  }
  
  diag(TEs) <- diag(seTEs) <- 0
  #
  rownames(TEs) <- rownames(seTEs) <- colnames(TEs) <- colnames(seTEs) <- trts
  
  res <- list(TEs = TEs, seTEs = seTEs)
  #
  res
}

setNA <- function(x) {
  x[!is.na(x)] <- NA
  x  
}

setNA_subset <- function(x, subset) {
  x[subset] <- NA
  x
}

setNA_vars <- function(x, varnames) {
  x[names(x) %in% varnames] <- NA
  x
}

setNA_nma <- function(x) {
   x$seTE.adj <- setNA(x$seTE.adj)
   x$seTE.adj.common <- setNA(x$seTE.adj.common)
   x$seTE.adj.random <- setNA(x$seTE.adj.random)
   x$correlated <- setNA(x$correlated)
   #
   x$TE.nma.common <- setNA(x$TE.nma.common)
   x$seTE.nma.common <- setNA(x$seTE.nma.common)
   x$lower.nma.common <- setNA(x$lower.nma.common)
   x$upper.nma.common <- setNA(x$upper.nma.common)
   x$statistic.nma.common <- setNA(x$statistic.nma.common)
   x$pval.nma.common <- setNA(x$pval.nma.common)
   #
   x$leverage.common <- setNA(x$leverage.common)
   x$w.common <- setNA(x$w.common)
   x$Q.common <- setNA(x$Q.common)
   #
   x$statistic.common <- setNA(x$statistic.common)
   x$pval.common <- setNA(x$pval.common)
   #
   x$TE.nma.random <- setNA(x$TE.nma.random)
   x$seTE.nma.random <- setNA(x$seTE.nma.random)
   x$lower.nma.random <- setNA(x$lower.nma.random)
   x$upper.nma.random <- setNA(x$upper.nma.random)
   x$statistic.nma.random <- setNA(x$statistic.nma.random)
   x$pval.nma.random <- setNA(x$pval.nma.random)
   #
   x$w.random <- setNA(x$w.random)
   #
   x$statistic.random <- setNA(x$statistic.random)
   x$pval.random <- setNA(x$pval.random)
   #
   x$seTE.predict <- setNA(x$seTE.predict)
   x$lower.predict <- setNA(x$lower.predict)
   x$upper.predict <- setNA(x$upper.predict)
   #
   x$prop.direct.common <- setNA(x$prop.direct.common)
   x$prop.direct.random <- setNA(x$prop.direct.random)
   #
   x$TE.indirect.common <- setNA(x$TE.indirect.common)
   x$seTE.indirect.common <- setNA(x$seTE.indirect.common)
   x$lower.indirect.common <- setNA(x$lower.indirect.common)
   x$upper.indirect.common <- setNA(x$upper.indirect.common)
   x$statistic.indirect.common <- setNA(x$statistic.indirect.common)
   x$pval.indirect.common <- setNA(x$pval.indirect.common)
   #
   x$TE.indirect.random <- setNA(x$TE.indirect.random)
   x$seTE.indirect.random <- setNA(x$seTE.indirect.random)
   x$lower.indirect.random <- setNA(x$lower.indirect.random)
   x$upper.indirect.random <- setNA(x$upper.indirect.random)
   x$statistic.indirect.random <- setNA(x$statistic.indirect.random)
   x$pval.indirect.random <- setNA(x$pval.indirect.random)
   #
   x$Q <- setNA(x$Q)
   x$df.Q <- setNA(x$df.Q)
   x$pval.Q <- setNA(x$pval.Q)
   x$I2 <- setNA(x$I2)
   x$lower.I2 <- setNA(x$lower.I2)
   x$upper.I2 <- setNA(x$upper.I2)
   x$tau <- setNA(x$tau)
   x$tau2 <- setNA(x$tau2)
   #
   x$Q.heterogeneity <- setNA(x$Q.heterogeneity)
   x$df.Q.heterogeneity <- setNA(x$df.Q.heterogeneity)
   x$pval.Q.heterogeneity <- setNA(x$pval.Q.heterogeneity)
   #
   x$Q.inconsistency <- setNA(x$Q.inconsistency)
   x$df.Q.inconsistency <- setNA(x$df.Q.inconsistency)
   x$pval.Q.inconsistency <- setNA(x$pval.Q.inconsistency)
   #
   x$Q.decomp <- setNA(x$Q.decomp)
   #
   x$W.matrix.common <- setNA(x$W.matrix.common)
   x$W.matrix.random <- setNA(x$W.matrix.random)
   #
   x$L.matrix.common <- setNA(x$L.matrix.common)
   x$Lplus.matrix.common <- setNA(x$Lplus.matrix.common)
   x$L.matrix.random <- setNA(x$L.matrix.random)
   x$Lplus.matrix.random <- setNA(x$Lplus.matrix.random)
   #
   x$Q.matrix <- setNA(x$Q.matrix)
   #
   x$G.matrix <- setNA(x$G.matrix)
   #
   x$H.matrix.common <- setNA(x$H.matrix.common)
   x$H.matrix.random <- setNA(x$H.matrix.random)
   #
   x$P.common <- setNA(x$P.common)
   x$P.random <- setNA(x$P.random)
   #
   x$Cov.common <- setNA(x$Cov.common)
   x$Cov.random <- setNA(x$Cov.random)
   #
   x
}



if (FALSE) {
  TE.direct.common = TE.direct
  seTE.direct.common = seTE.direct
  lower.direct.common = lower.direct
  upper.direct.common = upper.direct
  statistic.direct.common = statistic.direct
  pval.direct.common = pval.direct
  #
  TE.direct.random = res.r$TE.direct
  seTE.direct.random = res.r$seTE.direct
  lower.direct.random = res.r$lower.direct
  upper.direct.random = res.r$upper.direct
  statistic.direct.random = res.r$statistic.direct
  pval.direct.random = res.r$pval.direct
  #
  Q.direct = res.r$Q.direct
  tau.direct = sqrt(res.r$tau2.direct)
  tau2.direct = res.r$tau2.direct
  I2.direct = res.r$I2.direct
}

Try the netmeta package in your browser

Any scripts or data that you put into this service are public.

netmeta documentation built on April 3, 2025, 6:12 p.m.