R/bradley.terry.R

# curently removed since not relevant 09/19/2017
#' #' @title Bradley Terry Model
#' #' @description  Implements the standard Bradley-Terry (Luce) model.
#' #' @param P a matrix with partial order information.
#' #' @param max.iter integer, maximum number of MLE iterations.
#' #' @param sparse.correct numeric, correcting for weak connectivity. Set to 0 for internal choice.
#' #' @param tol double, convergence criterion.
#' #' @param print.level binary, should diagnostics be printed or not (Default).
#' #' @return data frame of merits and diagnostics.
#' #' @author David Schoch
#' #' @details Used to estimate the merits \eqn{\pi_u} with
#' #' \deqn{Prob(u<v)=\frac{\pi_v}{\pi_u+\pi_v}}.
#' #' @examples
#' #' ###TODO
#' #' @export
#' bradley_terry <- function(P, sparse.correct = 0, max.iter = 100, tol = 10^-8, print.level = 0) {
#'
#'     g <- igraph::graph_from_adjacency_matrix(t(P), "directed")
#'     sparse.corrected <- TRUE
#'     P <- t(P)
#'     n <- nrow(P)
#'     if (sparse.correct == 0) {
#'         eps <- 1/n
#'     } else {
#'         eps <- sparse.correct
#'     }
#'
#'     # sparse correction
#'     if (!igraph::is.connected(g, mode = "strong")) {
#'         P <- P + matrix(eps, n, n) - diag(eps, n)
#'         sparse.corrected <- TRUE
#'     }
#'
#'     N <- P + t(P)
#'     W <- rowSums(P)
#'
#'     # initialisation
#'     w_0 <- rep(1/n, n)
#'     w_old <- rep(n, n)
#'     iter <- 0
#'
#'     while (iter <= max.iter & sqrt(sum((w_old - w_0)^2)) > tol) {
#'         iter <- iter + 1
#'         w_old <- w_0
#'         w_0 <- W * rowSums(N/outer(w_0, w_0, "+"))^(-1)
#'         w_0 <- w_0/sum(w_0)
#'         if (print.level == 1) {
#'             print(sqrt(sum((w_old - w_0)^2)))
#'         }
#'     }
#'     df.res <- data.frame(score = w_0,
#'                          dominating = unname(igraph::degree(g, mode = "out")),
#'                          dominated = unname(igraph::degree(g, mode = "in")),
#'         comparable = unname(igraph::degree(g, mode = "all")))
#'     return(list(res = df.res, iter = iter, sparse.corrected = sparse.corrected))
#'
#' }

Try the netrankr package in your browser

Any scripts or data that you put into this service are public.

netrankr documentation built on Sept. 27, 2022, 1:07 a.m.