knitr::opts_chunk$set(collapse = T, comment = "#>") library(purrr) library(assertthat) library(neuroim2) options(mc.cores=1)
The neuroim2
package contains data structures and functions for reading, accessing, and processing 4-dimensional neuroimaging data.
Here we read in a 4D image consisting of 5 time points,
library(purrr) library(ggplot2) file_name <- system.file("extdata", "global_mask_v4.nii", package="neuroim2") vec <- read_vec(file_name) dim(vec) vec
Now imagine we have a set of 4d images. We can read them in with read_vec
. (Here we are just using three versions of the same file for the example).
file_name <- system.file("extdata", "global_mask_v4.nii", package="neuroim2") vec <- read_vec(c(file_name, file_name, file_name)) dim(vec) vec2 <- read_vec(rep(file_name, 10)) vec2
To extract a subset of volumes we can use the sub_vector
function:
vec_1_6 <- sub_vector(vec, 1:6) dim(vec_1_6) vec_1_6
series
and series_roi
functionsTo get the time-series at voxel (1,1,1) we can use the series
function:
series(vec_1_6, 1,1,1)
We can extract a 4d region of interest with the series_roi
as follows:
file_name <- system.file("extdata", "global_mask_v4.nii", package="neuroim2") vol <- read_vol(file_name) roi <- spherical_roi(vol, c(12,12,12), radius=8) rvec1 <- series_roi(vec, roi) ## or alternatively as a pipeline rvec2 <- read_vol(file_name) %>% spherical_roi(c(12,12,12), radius=8) %>% series_roi(vec,.) rvec2 ## we can extract the ROI values with the `values` method. assertthat::assert_that(all(values(rvec1) == values(rvec2))) assertthat::assert_that(all(coords(rvec1) == coords(rvec2)))
We can also extract an ROI using 1d indices:
r1 <- series_roi(vec, 1:100) r1
Or we can extract a plain matrix using the series
function:
r2 <- series(vec, 1:100) dim(r2)
We can also use coordinate indexing using voxel coordinates. First we load a binary mask with the same spatial dimensions as our NeuroVec:
mask <- read_vol(system.file("extdata", "global_mask_v4.nii", package="neuroim2"))
Now we convert indices to voxels and extract a matrix of values at the specified locations:
vox <- index_to_grid(mask, 1:100) r3 <- series(vec, vox) dim(r3)
And the same using series_roi
:
r4 <- series_roi(vec,vox) r4
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.