Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, include=FALSE-----------------------------------------------------
library(nevada)
## -----------------------------------------------------------------------------
x <- nvd(model = "gnp", n = 3, model_params = list(p = 1/3))
repr_nvd(x, representation = "laplacian")
## -----------------------------------------------------------------------------
x <- nvd(model = "gnp", n = 3, model_params = list(p = 1/3))
dist_nvd(x, representation = "laplacian", distance = "hamming")
## ---- eval=FALSE--------------------------------------------------------------
# #' Test Statistic for the Two-Sample Problem
# #'
# #' This function computes the test statistic...
# #'
# #' @param data A list storing the concatenation of the two samples from which
# #' the user wants to make inference. Alternatively, a distance matrix stored
# #' in an object of class \code{\link[stats]{dist}} of pairwise distances
# #' between data points.
# #' @param indices1 An integer vector that contains the indices of the data
# #' points belong to the first sample in the current permuted version of the
# #' data.
# #'
# #' @return A numeric value evaluating the desired test statistic.
# #' @export
# #'
# #' @examples
# #' # TO BE DONE BY THE DEVELOPER OF THE PACKAGE
# stat_{{{name}}} <- function(data, indices1) {
# n <- if (inherits(data, "dist"))
# attr(data, "Size")
# else if (inherits(data, "list"))
# length(data)
# else
# stop("The `data` input should be of class either list or dist.")
#
# indices2 <- seq_len(n)[-indices1]
#
# x <- data[indices1]
# y <- data[indices2]
#
# # Here comes the code that computes the desired test
# # statistic from input samples stored in lists x and y
#
# }
## ---- eval=FALSE--------------------------------------------------------------
# stat_student <- function(data, indices1) {
# n <- if (inherits(data, "dist"))
# attr(data, "Size")
# else if (inherits(data, "list"))
# length(data)
# else
# stop("The `data` input should be of class either list or dist.")
#
# indices2 <- seq_len(n)[-indices1]
#
# x <- data[indices1]
# y <- data[indices2]
#
# # Here comes the code that computes the desired test
# # statistic from input samples stored in lists x and y
# x <- unlist(x)
# y <- unlist(y)
#
# stats::t.test(x, y, var.equal = TRUE)$statistic
# }
## -----------------------------------------------------------------------------
x <- nvd(model = "gnp", n = 10, model_params = list(p = 1/3))
y <- nvd(model = "k_regular" , n = 10, model_params = list(k = 8L))
test2_global(
x = x,
y = y,
representation = "laplacian",
distance = "frobenius",
stats = c("flipr:student_ip", "flipr:fisher_ip"),
seed = 1234
)$pvalue
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.