R/CDimpute.R

Defines functions CDimpute

Documented in CDimpute

## Copyright (C) 2021 Rodney A. Sparapani

## This file is part of nftbart.
## CDimpute.R

## nftbart is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.

## nftbart is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

## Author contact information
## Rodney A. Sparapani: rsparapa@mcw.edu


CDimpute=function(x.train,
                  x.test=matrix(0, 0, 0),
                  impute.bin=NULL
                  )
{   ## NOT TRANSPOSED
    P = ncol(x.train)
    N = nrow(x.train)
    Q = nrow(x.test)

    if(Q>0 && P!=ncol(x.test))
        stop('The number of columns in x.train and x.test must be identical')

    check = length(impute.bin)
    if(!(check %in% 0:1))
        stop("The number of imputed binomial columns must be 0 or 1")
    impute.flag=(check==1)

    ## hot deck missing imputation
    ## ignore columns for binomial imputation in training

    same = FALSE
    miss.train=apply(is.na(x.train), 2, sum)
    names(miss.train)=dimnames(x.train)[[2]]
    if(impute.flag) miss.train[impute.bin]=0
    else impute.bin=0
    miss.train.=(sum(miss.train)>0)

    miss.test.=0
    miss.test=NULL
    if(Q>0) {
        miss.test=apply(is.na(x.test), 2, sum)
        names(miss.test)=dimnames(x.test)[[2]]
        if(impute.flag) miss.test[impute.bin]=0
        miss.test.=(sum(miss.test)>0)
    }

    if(miss.train.>0 || miss.test.>0) {
        same=(Q>0 && Q==N) ## are x.train and x.test the same?

        if(same)
            for(i in 1:N) {
                for(j in 1:P) {
                    same=((is.na(x.train[i, j]) &&
                            is.na(x.test[i, j])) ||
                           (!is.na(x.train[i, j]) &&
                            !is.na(x.test[i, j]) &&
                            x.train[i, j]==x.test[i, j]))
                    if(!same) break
                }
                if(!same) break
            }

        for(i in 1:N)
            for(j in 1:P)
                if(!(j %in% impute.bin)) {
                    k = is.na(x.train[i, ])
                    if(impute.flag) k[impute.bin]=FALSE
                    while(is.na(x.train[i, j])) {
                        h=sample.int(N, 1)
                        x.train[i, which(k)]=x.train[h, which(k)]
                    }
                }

        if(same && !impute.flag) x.test=x.train
        else if(Q>0) {
            if(same) x.test=x.train ## to hot-deck impute.bin columns only
            for(i in 1:Q)
                for(j in 1:P) {
                    k = is.na(x.test[i, ])
                    while(is.na(x.test[i, j])) {
                        h=sample.int(Q, 1)
                        x.test[i, which(k)]=x.test[h, which(k)]
                    }
                }
        }
    }

    return(list(x.train=x.train, x.test=x.test,
                miss.train=miss.train, miss.test=miss.test,
                impute.flag=impute.flag, same=same))
}

Try the nftbart package in your browser

Any scripts or data that you put into this service are public.

nftbart documentation built on March 30, 2022, 1:05 a.m.