Description Usage Arguments Value Examples
A non-Java based n-gram tokenizer to be used with the tm package. Support both character and word n-gram.
1 |
x |
input string. |
char |
logical, using character n-gram. char = FALSE denotes word n-gram. |
ngmin |
integer, minimun order of n-gram |
ngmax |
integer, maximun order of n-gram |
rmEOL |
logical, remove ngrams wih EOL character |
vector of n-grams
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | require(tm)
nirvana <- c("hello hello hello how low", "hello hello hello how low",
"hello hello hello how low", "hello hello hello",
"with the lights out", "it's less dangerous", "here we are now", "entertain us",
"i feel stupid", "and contagious", "here we are now", "entertain us",
"a mulatto", "an albino", "a mosquito", "my libido", "yeah", "hey yay")
ngramrr(nirvana[1], ngmax = 3)
ngramrr(nirvana[1], ngmax = 3, char = TRUE)
nirvanacor <- Corpus(VectorSource(nirvana))
TermDocumentMatrix(nirvanacor, control = list(tokenize = function(x) ngramrr(x, ngmax =3)))
# Character ngram
TermDocumentMatrix(nirvanacor, control = list(tokenize =
function(x) ngramrr(x, char = TRUE, ngmax =3), wordLengths = c(1, Inf)))
|
Loading required package: tm
Loading required package: NLP
[1] "hello" "hello" "hello"
[4] "how" "low" "hello hello"
[7] "hello hello" "hello how" "how low"
[10] "hello hello hello" "hello hello how" "hello how low"
[1] "e" "e" "e" "el" "el" "el" "ell" "ell" "ell" "h" "h" "h"
[13] "h" "he" "he" "he" "hel" "hel" "hel" "ho" "how" "l" "l" "l"
[25] "l" "l" "l" "l" "ll" "ll" "ll" "llo" "llo" "llo" "lo" "lo"
[37] "lo" "lo" "low" "o" "o" "o" "o" "o" "ow" "ow" "w" "w"
<<TermDocumentMatrix (terms: 24, documents: 18)>>
Non-/sparse entries: 35/397
Sparsity : 92%
Maximal term length: 10
Weighting : term frequency (tf)
<<TermDocumentMatrix (terms: 32, documents: 18)>>
Non-/sparse entries: 46/530
Sparsity : 92%
Maximal term length: 10
Weighting : term frequency (tf)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.