Nothing
#' Vectorized sampling from a non homogeneous Poisson Point Process (NHPPP) from
#' an interval (thinning method) with piecewise constant_majorizers (R)
#' -- but can be forced to sample from zero-truncated proposals.
#'
#'
#'
#' @description
#' Vectorized sampling from a non homogeneous Poisson Point Process (NHPPP) from
#' an interval (thinning method) with piecewise constant_majorizers.
#' The majorizers are step functions over equal-length time intevals.
#' This function is used for obtainning proposals for `vztdraw_intensity_step_regular()`
#'
#' @param lambda (function) intensity function, vectorized
#' @param lambda_args (list) optional arguments to pass to `lambda`
#' @param Lambda_maj_matrix (matrix) integrated intensity rates at the end of each interval
#' @param lambda_maj_matrix (matrix) intensity rates, one per interval
#' @param rate_matrix_t_min (scalar | vector | column matrix) is the lower bound
#' of the time interval for each row of (Lambda|lambda)_maj_matrix.
#' The length of this argument is the number of point processes that should be drawn.
#' @param rate_matrix_t_max (scalar | vector | column matrix) the upper bound
#' of the time interval for each row of (Lambda|lambda)_maj_matrix.
#' The length of this argument is the number of point processes that should be drawn.
#' @param t_min (scalar | vector | column matrix) is the lower bound
#' of a subinterval of (rate_matrix_t_min, rate_matrix_t_max]. If set,
#' times are sampled from the subinterval.
#' If omitted, it is equivalent to `rate_matrix_t_min`.
#' @param t_max (scalar | vector | column matrix) is the upper bound
#' of a subinterval of (rate_matrix_t_min, rate_matrix_t_max]. If set,
#' times are sampled from the subinterval.
#' If omitted, it is equivalent to `rate_matrix_t_max`.
#' @param tol (scalar, double) tolerance for the number of events
#' @param atmost1 boolean, draw at most 1 event time
#' @param force_zt_majorizer boolean, force the majorizer to be zero-truncated.
#' This option is used when the function is called to make proposals for
#' `vztdraw_intensity_step_regular()`. In general, do not set this option to `TRUE`.
#'
#' @keywords internal
vdraw_intensity_step_regular_forcezt <- function(
lambda = NULL,
lambda_args = NULL,
Lambda_maj_matrix = NULL,
lambda_maj_matrix = NULL,
rate_matrix_t_min = NULL,
rate_matrix_t_max = NULL,
t_min = NULL,
t_max = NULL,
tol = 10^-6,
atmost1 = FALSE,
force_zt_majorizer = FALSE,
...) {
if (!is.null(lambda_maj_matrix) && is.null(Lambda_maj_matrix)) {
mode(lambda_maj_matrix) <- "numeric"
rate <- lambda_maj_matrix
is_cumulative_rate <- FALSE
} else if (is.null(lambda_maj_matrix) && !is.null(Lambda_maj_matrix)) {
mode(Lambda_maj_matrix) <- "numeric"
rate <- Lambda_maj_matrix
is_cumulative_rate <- TRUE
} else {
stop("lambda_maj_matrix and Lambda_maj_matrix cannot both be `NULL`")
}
n_intervals <- ncol(rate)
n_draws <- nrow(rate)
range_t <- cbind(as.vector(rate_matrix_t_min), as.vector(rate_matrix_t_max))
if (nrow(range_t) > 1 && nrow(range_t) != nrow(rate)) {
stop("The (rows of) [Lambda|lambda]_maj_matrix and (length of) [rate_matrix_t_min|rate_matrix_t_max] imply different numbers of point processes to be sampled.")
}
if (nrow(range_t) == 1 && nrow(rate) != 1) {
range_t <- range_t[rep(1, nrow(rate)), ]
}
interval_duration <- (range_t[, 2] - range_t[, 1]) / n_intervals
if (is_cumulative_rate) {
lambda_maj_matrix <- matrix(0, ncol = n_intervals, nrow = n_draws)
lambda_maj_matrix[, 1] <- Lambda_maj_matrix[, 1] / interval_duration
for (col in 2:n_intervals) {
lambda_maj_matrix[, col] <- (Lambda_maj_matrix[, col] - Lambda_maj_matrix[, col - 1]) / interval_duration
}
}
if (force_zt_majorizer) {
Z_star <- vztdraw_sc_step_regular_cpp(
lambda_matrix = lambda_maj_matrix,
rate_matrix_t_min = rate_matrix_t_min,
rate_matrix_t_max = rate_matrix_t_max,
t_min = t_min,
t_max = t_max,
atmost1 = FALSE
)
} else {
Z_star <- vdraw_sc_step_regular_cpp(
lambda_matrix = lambda_maj_matrix,
rate_matrix_t_min = rate_matrix_t_min,
rate_matrix_t_max = rate_matrix_t_max,
t_min = t_min,
t_max = t_max,
tol = tol,
atmost1 = FALSE
)
}
n_max_events <- ncol(Z_star)
U <- matrix(stats::runif(length(Z_star)), ncol = n_max_events)
# Extracts correct majorising values
lambda_maj_idx <- ceiling((Z_star - range_t[, rep(1, n_max_events)]) / interval_duration)
# browser()
idx_adjusted <- as.vector(lambda_maj_idx + (1:nrow(lambda_maj_matrix) - 1) * ncol(lambda_maj_matrix))
lambda_maj <- matrix(
t(lambda_maj_matrix)[idx_adjusted],
nrow = nrow(lambda_maj_idx), ncol = ncol(lambda_maj_idx), byrow = FALSE
)
accept <- ifelse(lambda(Z_star, lambda_args) / lambda_maj > U, TRUE, NA)
Z <- Z_star * accept
Z_sorted <- matrix(
Z[order(row(Z), is.na(Z), method = "radix")], # shifts non-NAs to the left
nrow = nrow(Z), ncol = ncol(Z), byrow = TRUE
)
if (ncol(Z_sorted) > 1) {
Z_sorted <- Z_sorted[, colSums(!is.na(Z_sorted)) > 0, drop = FALSE] # removes empty columns after the shift
}
if (atmost1) {
return(Z_sorted[, 1, drop = FALSE])
} else {
return(Z_sorted)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.