Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(nlpsem) mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
load(system.file("extdata", "getLCSM_examples.RData", package = "nlpsem"))
# Load ECLS-K (2011) data data("RMS_dat") RMS_dat0 <- RMS_dat # Re-baseline the data so that the estimated initial status is for the # starting point of the study baseT <- RMS_dat0$T1 RMS_dat0$T1 <- (RMS_dat0$T1 - baseT)/12 RMS_dat0$T2 <- (RMS_dat0$T2 - baseT)/12 RMS_dat0$T3 <- (RMS_dat0$T3 - baseT)/12 RMS_dat0$T4 <- (RMS_dat0$T4 - baseT)/12 RMS_dat0$T5 <- (RMS_dat0$T5 - baseT)/12 RMS_dat0$T6 <- (RMS_dat0$T6 - baseT)/12 RMS_dat0$T7 <- (RMS_dat0$T7 - baseT)/12 RMS_dat0$T8 <- (RMS_dat0$T8 - baseT)/12 RMS_dat0$T9 <- (RMS_dat0$T9 - baseT)/12 # Standardize time-invariant covariates (TICs) ## ex1 and ex2 are standardized growth TICs in models RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning) RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus) xstarts <- mean(baseT)/12
getSummary()
function is used to generate a comprehensive summary table for these two models. Additionally, the visual representations of the growth rate and change from the baseline for both models.paraNonP_LCSM <- c( c("mueta0", "mueta1", paste0("psi", c("00", "01", "11")), paste0("rel_rate", 2:8), "residuals", paste0("slp_val_est", 1:8), paste0("slp_var_est", 1:8), paste0("chg_inv_val_est", 1:8), paste0("chg_inv_var_est", 1:8), paste0("chg_bl_val_est", 1:8), paste0("chg_bl_var_est", 1:8)) ) Read_LCSM_NonP <- getLCSM( dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "nonparametric", intrinsic = FALSE, records = 1:9, growth_TIC = NULL, res_scale = 0.1, paramOut = TRUE, names = paraNonP_LCSM ) paraNonP_LCSM_TIC <- c( c("alpha0", "alpha1", paste0("psi", c("00", "01", "11")), paste0("rel_rate", 2:8), "residuals", paste0("beta1", c(0:1)), paste0("beta2", c(0:1)), paste0("mux", 1:2), paste0("phi", c("11", "12", "22")), "mueta0", "mueta1", paste0("slp_val_est", 1:8), paste0("slp_var_est", 1:8), paste0("chg_inv_val_est", 1:8), paste0("chg_inv_var_est", 1:8), paste0("chg_bl_val_est", 1:8), paste0("chg_bl_var_est", 1:8)) ) Read_LCSM_NonP_TIC <- getLCSM( dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "nonparametric", intrinsic = FALSE, records = 1:9, growth_TIC = c("ex1", "ex2"), res_scale = 0.1, paramOut = TRUE, names = paraNonP_LCSM_TIC )
getSummary(model_list = list(Read_LCSM_NonP@mxOutput, Read_LCSM_NonP_TIC@mxOutput)) Figure1 <- getFigure( model = Read_LCSM_NonP@mxOutput, sub_Model = "LCSM", y_var = "R", curveFun = "NonP", y_model = "LCSM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year", outcome = "Reading" ) show(Figure1) Figure2 <- getFigure( model = Read_LCSM_NonP_TIC@mxOutput, sub_Model = "LCSM", y_var = "R", curveFun = "NonP", y_model = "LCSM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year", outcome = "Reading" ) show(Figure2)
Read_LCSM_QUAD <- getLCSM( dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "quadratic", intrinsic = FALSE, records = 1:9, res_scale = 0.1 ) set.seed(20191029) Read_LCSM_EXP_r <- getLCSM( dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "negative exponential", intrinsic = FALSE, records = 1:9, res_scale = 0.1, tries = 10 ) set.seed(20191029) Read_LCSM_JB_r <- getLCSM( dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "Jenss-Bayley", intrinsic = FALSE, records = 1:9, res_scale = 0.1, tries = 10 )
Figure3 <- getFigure( model = Read_LCSM_QUAD@mxOutput, sub_Model = "LCSM", y_var = "R", curveFun = "QUAD", y_model = "LCSM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year", outcome = "Reading" ) show(Figure3) Figure4 <- getFigure( model = Read_LCSM_EXP_r@mxOutput, sub_Model = "LCSM", y_var = "R", curveFun = "EXP", y_model = "LCSM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year", outcome = "Reading" ) show(Figure4) Figure5 <- getFigure( model = Read_LCSM_JB_r@mxOutput, sub_Model = "LCSM", y_var = "R", curveFun = "JB", y_model = "LCSM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year", outcome = "Reading" ) show(Figure5)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.